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ABSTRACT

This anual includes lcompilation of methods of solution for thermal stress pro-
blems of t• types freqgntly encountered by aircraft designers. Soqe/f thf' methods
represent original work done at Republic Aviation Corporation and others woee obtained
from t~ general literature. Wl~re fea•1e, graphs and formulas awe presented from

which tl user my obtain answers directly. *Tlese are presented in non-dimensional
form to extend tbk,4*& applicability. P( otho cass, tables a.%4 furnished which describe
methods of solutin, Liberal use is made of illustrative problems and examples.

[Within t~e limitations of linear elastic theory, ge following problems a~e treated
in deM:

(1) ticauy determinate beams•
(2) edundant beams and fr si
(3) *vete or bolted joints,
(4)•lts,•.

(5) ially symmetric shells/

For more complex linear problems, a general method of attack is presented which
reduces the thermal stress problem to an equivalent mechanical loading problem. This
approach permits utilization of the great variety of analytical methods which have been
developed for stress analysis of structures imder purely mechanical loads. A brief re-
view of some of these methods is included with pertinent remarks on their applicability to
thermal stress problems.

In many cases of practical interest, thermal effects introduce non-linearity by causing
large deflections, by affecting the mechanical properties of the material, or by introducing
creep. Solutions for these problems are quite limited. However, they are discussed in some
detail and a generalized stress-strain-time-temperature relationship is postulated which is
applied to buckling of columns and plates.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

W1l1.1"i C. lý
Colonel , USAF
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NOTES ON USING THE MANUAL

This Manual consists of nine basic sections, divided into numbered sub-sections
and paragraphs. For simplicity in cross-referencing material in the text, all portions
of the Manual designated with a two-tier number (i.e., 1. 1) are considered sub-sections,
and all portions designated by numbers of three or more tiers (i. e., 1 1. 1 or 1. 1. 1. 1)
are considered paragraphs.

Throughout the . lanual, the numbered paragraphs (or sub-sections) have been
used as the basis for numbering figures, tables, and equations, with new sequences
beginning with each numbered paragraph. Figure and table numbers consist of an appro-
priate paragraph number, followed by a sequence number for the particular figure ot
table. For convenience the paragraph designations have been omitted from the equation
numbers. When an equation from another paragraph is cited in the text, the number of
the paragraph in which that equation occurs is also cited. When a paragraph number is
not given in conjunction with the citation of an equation, it is to be assumed that the
equation is included in the paragraph in which the citation occurs.

References are listed at the end of those sections which have more than one
reference. In addition,each section contains its own complete table of contents and list
of symbols.
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INTRODUCTION

Aerodynamic heating of bodies moving at supersonic and hypersonic speeds results
in non-uniform temperature rises. High velocity airplanes and missiles are thus sub-
jected to transient and steady state non-uniform temperature distributions which produce
thermal stresses. In its broadest sense, the thermal problem encompasses both the
fields of mechanics and thermodynamics of non-rigid bodies. This Manual is not concerned
with the solution of the thermodynamic problem. The purpose of the Manual is to provide
analytical techniques for the determination of deformations and stresses in structures sub-
jected to mechanical loads and prescribed temperature distributions.

In order to render problems amenable to engineering application, simplifying assump-
tions and idealizations are made. These are enumerated in the appropriate sections of the
Manual. The subject matter is oriented toward the engineer rather than the mathematician

E in that detailed derivations of techniques and formulas are not emphasized. Instead, more
space is devoted to application and qualitative discussions. Mathematical derivations can
be found in the references listed at the end of each section.

The choice of subject material was primarily dictated by those problems which are
tractable analytically and which occur most frequently in practice. However, in many
instances, suggestions are made for the extension of techniques to more complex problems.
Most of the problems treated are linear elastic, in which the stiffness may vary pointwise
over the structure but does not vary with load. Furthermore, in the more difficult problems
(e. ., plates and shells), it is assumed that temperature variations do not affect the stiff-
nesses significantly. Non-linear problems are, for the most part, discussed qualitatively.

Brief summaries of the nine sections of the Manual follow.

Sections 1 and 2 of the Manual briefly discuss the theoretical considerations and funda-
mental techniques which underlie the structural applications. Section 1 presents the essen-
tial ideas of strain and stress, the concepts of equilibrium and compatibility, and discusses
the important energy theorems. General techniques (e.g., virtual work, virtual displace-
ments, flexibility and stiffness methods) are covered in Section 2. It is recommended that
standard texts and the references listed at the ends of the sections be consulted for a more
complete development of these subjects.

Elevated temperature environments generally cause the non-linear behavior of
engineering materials to become more pronounced, and the designer is forced to reassess
the interacting effects of stress, temperature, and time upon structural materials. Section 3
discusses the deformation mechanism and postulates a stress-strain-temperature-time re-
lationship which takes these non-linear effects into account. Methods of determining the
necessary material parameters from simple test data are indicated.

Section 4 presents the thermo-elastic analysis of beams. Since beam analysis is a
frequently occuring structural problem, much space is devoted to the presentation of approxi-
mate time-saving techniques. The deformations and stresses in unrestrained beam cross

WADD TR 60-517 xix



INTRODUCTION (Cont'd)

sections are discussed in detail. Temperature distributions are represented by polynomials,
cross sectional geometries are expressed parametrically, and non-dimensional solutions are
developed. The common form of tabular solutions is also included. General techniques are
then presented for the solution of indeterminate beam systems. The concept of equivalent
fixed end reactions is employed in reducing the thermal problem to a mechanical loading
problem.

Section 5 deals with the thermo-elastic analysis of joints subjected to mechanical
loads and temperature. The loads in the attachments are presented in non-dimensional
graphical form. The flexibility of the plate material and of the hole-pin combination are con-
sidered in the solutions. The effects of rigid pins, rigid sheets and "slop" are evaluated.
The problem is initially presented for a joint which does not bend and then is modified to
indicate the change in the non-dimensional parameters with bending.

Section 6 is concerned with the determination of thermal stresses and deflections in
plates due to temperatures which vary through both the plate plane and-the plate thickness.
The major problem areas considered are

(1) The bending of ciruclar and rectangular plates.
(2) The axisymmetrical and asymmetrical slab problem (plane stress and plane strain)

for circular plates and rings.

Sections 7 and 8 present the thermo-elastic analysis for the stresses and deformations
of axisymmetric shells subjected to axisymmetric loads and temperatures. Solutions
are given for the conical shells which can approximate the solutions ýfor other structural
shapes. Solutions for the compatibility forces which are generated at boundaries of conical
segments, edges, or bulkheads are included to complete the analysis.

Section 9 deals with the instability of structures. Approximate methods are emphasized
in order to include the effects of temperature on stiffness and plastic behavior. Use is made
of non-dimensional buckling curves to reduce the amount of data required by instability pro-
blem solutions.

%3

Manuscript released by the authors September 1960 for publication as a WADD Technical
Report.
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SECTION 1 - THEORETICAL CONSIDERATIONS

The general problem considered is the determination of the stresses and deformations
in a structure when subjected to a given load-temperature distribution. The problem can be
exceedingly complex and it is essential that the engineer have some concept of the structure' s
behavior. Many difficult problems can be approximated by neglecting parameters which are
of small significance. The significance of a parameter can only be estimated if the behavior
of the structure is known. The introduction of temperature into the probleta may complicate
the solution but it does not alter the structural techniques. It is, therefore, mandatory that
the engineer become cognizant of the structural principles before he attempts to solve the
thermal problen.

When a structure is subjected to mechanical =d thermal stimuli, it responds by de-
formingand storing energy. The deformation is characterized by a "strain distribution" with
an accompanying "stress and energy density distribution". The determination of these distri-
butions requires an understanding of the concepts of strain and compatibility, stress and equil-
ibrium, boundary conditious, uniqueness of solutions, and the stationary characteristics of
the energy forms. These concepts are briefly discussed in this section.

The following symbols are used throughout this section:
Length of beam

n Unit vector normal to surface
n, Cosine of angle between normal to the surface and i axis
r Cylindrical or spherical coordinate
t Traction vector
u Displacement vector with components u1 , u2 , u3
x, y, z Distances along the coordinate axes

B Body
E Young' s modulus
E Secant modulus
Fs Body force per unit of volume acting in i direction
G Shear modulus
K Spring constant
L Potential energy
L* Complementary potential energy
P Point in a body; Concentrated load
Q Point in a body
R Region of body; Reaction
S Surface
T Temperature
U Strain energy
U* Complementary strain energy
UV Strain energy per unit volume

UV Complementary strain energy per unit volume

V Volume
W Loss in potential energy of the surface tractions and body forces
Wt Loss in potential energy where the tractions are prescribed
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Loss in potential energy where the displacements are precribed
X, Y, Z Traction in x, y, z directions

a Coefficient of linear expansion
6 Operator indicating a small change
A Deflection

lj 1=j: Extensional strain in the i direction
iij: %earing strain. Half the angle change between two initially perpendicular
lines in the i and j directions.

e Cylindrical or spherical coordinate
9o" +0a +0o

xx yy zz
p Poisson' s ratio
a Stress

Stress components acting on plane perpendicular to i direction and in the j
011j direction
4'Spherical coordinate
w Rotation

Subscripts

i, j Dummy subscripts
n Acting on plane perpendicular to n direction
x, y, z Referring to x, y, z directions
r, 0, 4 Referring to r, G, 4 directions. Wu4

Symbol for differentiation; e.g., ui, j =-- i 
I

Superscripts

Displaced position

1.1 STRAIN

A body is said to be strained when the relative positions of points in the body are
altered. The changes in the relative positions of points are called deformations, and the
stidy of deformations is the province of the analysis of strain.

Although all material bodies are to some extent deformable, it is useful to introduce
tae ideal case of a rigid body, i.e., one which does not deform. A rigid body is one for which
the distance between every pair of points remains the same throughout its history.

ta Let the non-rigid body B, in the undeformed state, occuP3 some region R referred

to an orthogonal set of Cartesian axes O-x1 x2 x3 (Figure 1.1-1) fixed in space. Let

P (x1 , x2 , x3 ) represent a typical point P. In the strained state, the points of B will occupy

some region RI and the point P (x, x2 , x3 ) will displace to the point P' (xi, xj, x1). The
displacement u is a vector and is given by

x x
u (u1, u2 , u3 ) = (x -x 1 ' x 2' 2 -x 3 ).
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1. 1 (Cont' d)

x•3

x2

1

FIGURE 1.1-1 DISPLACEMENT OF A STRUCTURE UNDER
MECHANICAL AND/OR THERMAL LOADS

Now consider two neighboring points 0 (0, 0, 0) and 0' (x 1 ,X2 ,X3 ) before deformation. Deter-

minination of their relative displacements due to some external stimulus is of interest. From the
Taylor' s Expansion Theorem of the calculus,

u. (XlX 2 ,X3 ) =u (0,0,0) x1 + x( +000
VV Ot e (0invovO) (0 )t 2 +O )

-- 1 ) ( ,0 ,0

+ terms involving the higher derivatives, (Ia)

or, more compactly,
3 a u

uW a xi , X+.. (1b)
J=1 0

alu
Let the symbol u W be defined by u, = -j

Then the expression (la) becomes
3

(x)=u, (0)+ E (Uj)O xj+. (0c)
=11
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1.1 (Cont'd)

Furthermore,

(UjJ) = (ui, + ujj) + . (Uil - Uj,)

is an algebraic identity.

Introduce the symbols
1

CiJ = 2 (u ij + u,) d

and (2)

SiJ = - Uj,i)

so that the relative displacement of the neighboring points is
3

o, W 0 - -i (0 C ÷+..
J=1 i+ i 0

The quantities c are symmetrical in the indices, i.e., 6Ej C Ji and are known as the

components of strain (Reference 1-1).

pUl
Example 1: C.1 is the longitudinal component of strain in the xI direc-

tion, (Figure 1. 1-2(a)) ui 1 = - is the longitudinal or extensional component of strain in

the x, direction.

Example 2: E12 = = 2 is half the change in the angle between two

line elements which were originally at right angles to each other and is referred to as the
shearing component of strain in the xl-x 2 plane (Figure 1. 1-2(b)).

The quantities wo i are skew symmetrical, i.e. = - wji and are known as the

components of rotation because they can be shown to represent components of a rigid body rota-
tion Reference 1-1).

At each point of the body, there exists a set of three mutually orthogonal directions for
which the shearing strains are zero. These directions are called the principal axes of strain
and the corresponding extensional strains are the principal strains. The principal axes of
strain remain perpendicular to each other after the deformation, and an elemental rectangular
parallelepiped with edges parallel to the principal axes remains a rectangular parallelepiped q
after deformation. In general, it will have also undergone a small rotation (Reference 1-2).
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ddXLx 2, u 2 x 2, u2 •2

I dxI + dx1

d. xX ax1u

SXlU1•.•_.Xl,U 1

(a) Extensional Strain (b) Shearing Strain

FIGURE 1.1-2 TYPES OF STRAIN

1.1.1 Compatibility

From a physical point of view, the displacement ui in a simply-connected continuous

body must be single valued and continuous. Certain restrictions must be placed on the strains
S. in order that this be so. These restrictions constitute the so-called strain-compatibilityequations.

The compatibility equations are obtained by considering the defining formulas for the
strain components in rectangular coordinates:

(1)•-1[ ui, j + uj,i = ij '(1

as a system of partial differential equations from which the displacements ui are to be deter-

mined when the strain components c E are prescribed functions of the coordinates. If the body
Is simply-connected, it can be'shownJ (Reference 1-1) that the conditions on the strains neces-
sary and sufficient to ensure single-valued, continuous solutions for.the displacements consti-
tute six independent partial differential equations. Expressed in Cartesian coordinates, they are:
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a2 a f a C a 4E
xx a yz+ z x xy)

-a z = 5ax - x + y + az

ae a ( xz a ac )
azax =- ay aY+ yz + I X

a2c a2 a24X U•a

Sz= y + zz
aaz az2 ay2

D2 a2 z 2t

azxop ax2 ax 2

T.................................................................................

2 +E D

Y Oaz 8x 2x 2 y O

222

areneesar to enur snl-aedy d zslcmnsTeecniiossxiythttelmt

2 -z (- +~- Zxx

2. 2 2

The abovera corcestinbiliy eqation usuallyddescribedhnhermal and mehanca psressstaems)
alsoughoute the bdetemiatonse sofmte relaive dislyangmon the suromc Eq (1). oyhwn

Figre necessar Lt teui omvco o enesurefage-auddipaeents. thepsin e odtossecifyntatted limit
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across the surface S at the point Q is defined as

tn = Lira 6Pn ()I
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1.2 (Cont' d)

-a nnnn• 6S

-S aS

QQ

(a) Uncut Body (b) Free Body

FIGURE 1.2-1 TRACTIONS AT THE POINT Q ACTING ON THE PLANE WITH NORMAL n

The traction Is thus a vector which specifies the force acting per unit of area at a
point. The components of the traction vector in a given set of directions are defined as the
stress components. The stress components at a given point are dependent upon the orienta-
tion of the plane through the point with respect to the chosen coordinate system. Thus, for
example, in a rectangular coordinate _system (Figure 1. 2-2), the stress components in the
x,y,and z directions of the traction t , acting on the face normal to the x axis, are ax' or

and o- , respectively. Here, the first subscript indicates the direction normal to the area
on wh~h the stress component acts and the second subscript refers to the direction of the
component.

All the remarks pertinent to principal strains apply to the stresses. In addition, when
the material is isotropic, then the principal directions of stress and strain coincide.

,6 1
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t
yz x
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0~ xx
zx

dy -~x

4 zz

dx

z

FIGURE 1. 2-2 STRESS COMPONENTS

1. 2. 1 Stress Equations of Equilibrium in Cartesian Coordinates

The equilibrium equations state that the sum of the forces acting on a differential ele-
ment of material are in static or dynamic equilibrium.

Figure 1. 2. 1-1 illustrates an elemental rectangular parallelepiped with edges parallel
to the x, y and z axes. In addition to the stresses acting on the faces, there may exist body
forces r dxdydz, where Y' is the body force per unit of volume. In most practical ap-
plications, the body forces are due either to the weight of the body in a static problem or
D' Alembert inertia forces in a dynamic problem.

Equilibrium of forces in the x direction requires that:
xx + + +F =0

Ox ay fz x

Similarly, for the y and z directions,
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W + yy+ aoy+ F =0

(1a)

+ + -+ F =0.

'14

Gy + d
ayy

yxy + 83 'd a
aux

8z +Id

dy Oýy dz

a- x dx

u +-zzdz
zz az

zd
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Conservation of angular momentum (equilibrium of moments) leads to equality of cross-shears,
or

~ (1b)
ox =~

Consequently, the significant number of stress components is reduced from nine to six. The
equations of equilibrium in other than Cartesian coordinates take different forms (Section 1.6).

1.3 BOUNDARY CONDITIONS

In order to have a complete solution, something must be known about each point on the
bounding surface of a structure. Either the surface tractions (applied stresses) must be known
or the displacements must be specified (e. g., zero displacements at a support) or a known
relationship between the tractions and displacements must be prescribed ((,. g., flexible sup-
port of known stiffness).

The prescribed traction components in the directions of the chosen coordinate axes may
be expressed In terms of the surface stresses by means of the equilibrium equations

X =o n +or n +a n
xxx yx y zxz

Y =axy nx +y n +* n (1)

Z =axz nx+ yz ny zz nz

where X = component of traction in the x direction, etc. (Figure 1.3-1), nx = cos (n,x) =cosine
of the angle between the normal to the surface and the x axis.
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y

Y

0121

a X

FIGURE 1. 3-1 SPECIFICATION OF SURFACE TRACTIONS

1.4 STRESS-STRAIN RELATIONSHIP

The complete solution of a problem in elasticity requires the determination of six
stress components, three displacement components and six strain components at each point

S~of a body. Fifteen indepoudent equations are required for the evaluation of these quantities.
S~Nine of these equations have already been presented, namely the six strain displacement re-

• ~lations (Eqs. (2) of Sub-section 1. 1, which ensure that the comp teatibilit equations are sat- :Sisfied when the displacements are single-valued) and the three equilibrium equations (Eqs.
S~(1) of Paragraph 1. 2. 1). Both of these sets of equations are independent of the material [
S~properties of the body. t
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1.4 (Cont' d)

The remaining six equations are obtained from a stress-strain relationship between
the six stresses and six strains. It is through this relationship, which is a property of the
material, that the effects of plasticity, temperature, creep, etc., come into play.

If the material is isotropic and linearly elastic, then the stress-strain relationship
can be expressed as

I ii [TI *i-{ ('j + 'kk) + aT

l~v ( )(1a)

E - .. i,j,k = 1,2,34 ij E Ij

where E = elastic modulus,
z/ = Poisson' s ratio
a = linear coefficient of thermal expansion
T = Temperature above room temperature as a datum.

The shear modulus is defined by
E

G = 2(l- -) (1b)

Because of the isotropy of the material, the expansions due to temperature cause no
shearing strains. The linear elastic-stress-strain relations for an isotropic material are of
the form of Eq. (la) for any orthogonal coordinate system (rectangular or curvilinear). For
example, in a rectangular coordinate system,

i,j,k = 1,2,3 x,y,z

while for a cylindrical coordinate system,

i,j,k = 1,2,3 = r, 0, z

The linear stress-strain relationships of Eq. (la) can be modified to provide stress-
strain relationships for materials which are not linear elastic by employing an equivalent

secant modulus E= a in place of E. Unfortunately, E5 will not be constant andseatmouu S c - ciT

direct solution of problems may be extremely difficult. A progressive solution may be pos-
sible by solving the problem for small increments of load-time histories where it is assumed
that the modulus is constant in each interval, evaluating new constant moduli for the next
increment, and continuing the process until the final load-time history is applied. This tech-
nique must assume the sense of the incremental stress since a material may have different
moduli dependent on the direction of loading.

The strain-compatibility equations can now be converted to stress-compatibility equa-

tions through the stress-strain relationships. Thus for a linear-elastic stress-strain relation-
ship with temperature, Eqs. (2) of Paragrapd 1.1. 1 become

2____• __ lO 2T+ T 1
(1+V1) V2  + .2@V+

xx 8 x2 E -V a0

(21+ 1 ) TV2

(1+yy 2 V- - + atE [291 V2 " + 2 = 0 (2)
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2+~r 1+v/ V2 T, 2T]

( v _ + aE -0(ly 2zz 1+ Yz 2-

Oxaz

(1+1) V2  a2@ a 2 T (2)aXy+ )x--•- + a E Oxft 0

P2S

aa =xp cont ' d

(lu 2 ay + z 2@ + aE•--- 2T=0,
a1VV + +2 21E
yz Opy Oz

where

aj-0 + a + a
xx yy zz

or, in shorthand notation,

(l+Y) V CTij + E L +% 17.'__ V2T+Ti = 0,2 + @ 'ij + a E qj 1 v 2 T ,i0

where

1 =0,l¢j
•lj =• =j

The stress compatibility equations can be employed to show that the only time the
thermal stresses are identically zero in an unrestrained linear-elastic body is when the
temperature is a linear function of the rectangular (x,y,z) coordinates. Assume all stress
components oxx ...... ayz are zero. Then certainly the equilibrium equations are satisfied

throughout the interior of the body and on the surface. Equations (2) reduce to

82T _ T
1+" V2T + = 0 = 01 - 2/ a2 a z

1 V+ T+ - 0 = 0 (3)

V2T LT 0 T 0
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(I+v) V2 a+ a 2E v 2T 0[1-& ZJ

22
a + 026 + aE -= 0•xz axaz C•xft

(2r2 a2+ 2 (2)S--•-- VE 0 co-ttdax Oy axOpycont' d

(I+v) V2  + a20 + a E =0,
yz -Yf Oy &Z

where
=a + a + a"

xx yy zz

or, in shorthand notation,

(1+Y) V2  +[ ®+ V2a+ T, = 0
ij i J -Y Ij

where

iJ =1, i=j

The stress compatibility equations can be employed to show that the only time the
thermal stresses are identically zero in an unrestrained linear-elastic body is when the
temperature Is a linear function of the rectangular (x,y,z) coordinates. Assume all stress
components oxx ...... a are zero. Then certainly the equilibrium equations are satisfied

throughout the Interior of the body and on the surface. Equations (2) reduce to

1 V2 T 82T OT = 0
V +" T + 0._ ax ft 0.T• =

1 +v 8y2 32T8
1+V 2T +0T= 0 (3)

1 +'v 2 a2 T _03 T
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1.4 (Cont' d)

which yields the condition

2T a2T 82T 2T 2 2 T -2
2 2 2(4)

Equations (4) have the unique solution that T must be of the form

T = Ax + By + Cz + D , (5)

where A, B, C, D are constants; i.e., T is at most a linear function of the rectangular
coordinates x, y, and z.

NOTE: If T = Ar for an unrestrained circular plate where r is the radial coordinate measured
from the center, there will be thermal stresses. This follows because T is linear in r but not
in x and y where

r=Fx2 + y

1.5 UNIQUENESS

The strain displacement relations, equilibrium equations, and linear stress-strain re-
lations provide a set of equations from which the stresses, strains, and displacements are to be
determined at each point of a linear elastic body. From this set of equations, together with
appropriate boundary conditions, it can be proven not only that there exists a solution to the
linear elasticity problem but also that the solution is unique.

In a simple form (see Reference 1-1 for a more complete discussion), Kirchhoff Is
Uniqueness Theorem can be stated as follows: If the initial displacements, velocities, body
forces and temperatures are specified throughout the volume, and if the compatibility con-
ditions discussed in Paragraph 1.1.1 are satisfied and the appropriate boundary conditions
(Sub-section 1.3) are specified over the entire surface, there exists only one form of equili-
brium in the sense that the distribution of stresses and strains is determined uniquely.

The above theorem applies to elasticity problems with infinitesimal strains and dis-
placements. If the strains and displacements are finite, the solution may not be unique as in
problems concerning elastic stability (Section 9), where different equilibrium configurations
are possible. The uniqueness of the solution for infinitesimal strains suggests the utilization
of the incremental method for closer approximations of the non-linear problem. Consideration
should be given to changes in stiffness, geometry, etc., with load-temperature history.

1.6 SPECIAL ORTHOGONAL COORDINATE SYSTEMS

The representation of the stress-strain relationships, strain-displacement equations
and the equilibrium equations depends upon the syt.tem of reference employed. It is often
convenient to select a coordinate system which will simplify the boundary conditions and re-
quired solution. The three most useful orthogonal coordinate systems are the rectangular,
cylindrical and the spherical. For linear elastic, isotropic bodies, the stress-strain relation-
ships (Eq. (la) of Sub-section 1.4) are of the same form for all orthogonal coordinate systems.
The strain-displacement equations and equilibrium equations have already been presented in
rectangular coordinates. The cylindrical and spherical counterparts are shown in Tables 1.6-1
and -2. These expressions are simplified if the three dimensional problem reduces to a two or
one dimensional problem.
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TABLE 1.6-2

EQUATIONS OF EQUILIBRIUM

ij,+F =0

Rectangular

•xx, x yx, y zx, +z • F=

S +o +or +F =0
xy,x yy,y zy,z y

+y +o r +F 0
xz,x yz,y zz,z z

Cylindrical

+ 1 rr ee 1rrF 0
arr, r r re,e rz, z r r

1, 2 + F2
r - E,e +zO,z + 're r Fe= 0

or +1e + C + a + Fz0
rz,r r Oz, e zz, z r rz

Spherical

O=rr, r +rler,e + 1 + 2 c - t

3a rreee + ae - q0e cot E) F
0 0= rO), r + 1r (r E) e•r + (sEE '0 E) 0• r o

a1 + __ 1 +3 +2cote )Oe +F0
0  0r4,r r - 60 ,e 0rsine 4i0- r
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1.7 ENERGY PRINCIPLES

The behaviour of a structure can be described by means of energy principles
which yield relationships between the stresses, strains, displacements and forces
when adequate conditions (boundary, temperature-load-time history, material proper-
ties, etc.) are defined. These principles can be derived from the "Principle of Virtual
Work" which is a restatement of conservation of energy.

1.7.1 Principle of Virtual Work

"If a body is in equilibrium under the action of prescribed body and surface
forces, the work done by these forces in a small additional displacement, the virtual
displacement 6u, is equal to the change in the internal strain energy, second order
terms in the increments of strain being neglected." The strain energy is defined in
Paragraph 1.7.2.1.

A qualitative argument supporting this theorem is as follows:

"The body "B" with surface S (Figure 1.7.1-1) is in equilibrium under the action
of the applied external force, body forces, and internal stress systems, represented

t ~6 t

B

at O tt

FIGURE 1.7. 1-1 ELASTIC BODY WITH APPLIED FORCES

symbolically by 'I" "1F" and "o*", respectively, If an incremental, self-equilibrating
external force system "6 t" is imposed, there result corresponding internal stresses
6 ar, strains 6 e and continuous displacements 6 u. From conservation of energy,

ft6udS + F6udV+ (terms of order 5u6t)

S=-f• e5c dV + (terms of order 65 6c)

B
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1.7.1 (Cont' d)

Neglecting second order terms,

which is the mathematical statement of the theorem.

A consequence of the theorem of virtual work is the Reciprocal Theorem of Betti

and Rayleigh: If an elastic body is subjected to two systems of body and surface forces,
then the work that would be done by the first system ti, F (surface tractions and body

forces, respectivelyl in acting through the displacements u! due to the second system of1

forces, is equal to the work that would be done by the second system t , F, in acting through

the displacements u. due to the first system of forces. In symbols,the theorem becomes:

ItiuidS+ F udV Vtu.dS+ 1 F!u.dV (2a)
.Sl ~B 1  VS B

where the repeated subscript I implies summation.

An alternate form of the re :iprocal theorem is

SdS + d = F udV
where ftfuij di1S Bj B

where the unprimed quantities correspond to surface tractions, body forces, and stresses
of the first system and the primed quantities to the displacements and strains of the second
system. It is important to note that the forces and stresses of the first system can be un-
related to the displacements and strains of the second system, and may include thermal
effects. The only requirements are that the force-stress system be in equilibrium and the
strain displacement system be compatible. This feature of the reciprocal theorem makes
it extremely useful in the solution of statically indeterminate problems (Paragraph 2.1.1).

REMARK: The virtual work and reciprocal theorems are quite general and are not restricted
to elastic problems.

1.7.2 Variational Principles

The solution of three dimensional problems in the theory of elasticity re.presents
in many cases an almost impossible task even for the isothermal or mechanical problem.
For isotropic and homogeneous bodies, the literature contains only approximate solutions
which are based upon simplifying assumptions. One very powerful method of attack which
will yield approximate solutions is based upon that branch of mathematics which is known
as the calculus of variations. The application of the calculus of variations to the field of
elasticity and thermoelasticity depends upon the following variational principles:

(1) The principle of minimum potential energy, and

(2) The principle of minimum complementary energy (sometimes called comple-
mentary potential energy).

These in turn follow from the principle of virtual work which was discussed in Paragraph
1.7.1.
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1.7.2 (Cont' d)

Before discussing the variational principles, in detail, it will be desirable to first
define the energy terms employed and the mathematical operations which are essential to
their proper application.

1.7.2.1 Definitions of Terms

Potential Energy of Surface Tractions and Body Forces: The loss in potential
energy of the surface tractions t, and body forces Fi is defined by

W f tudS + FudV (1)
#SB

where the tractions ti have the dimensions of force per unit of area and the body forces F1

have the dimensions of force per unit of volume. The displacements ui, and hence the poten-

tial energy, are measured from a datum defined by the undeformed position of the body.

Strain Energy: The strain energy density in a deformable body is defined as the
work done per unit of volume by the internal stresses when the stresses and corresponding
"strains vary from zero to their terminal values. The strain energy density may be expressed
in terms of the stresses and strains as

ud= , (2)

where, in Cartesian coordinates,

ode= a de +0a de +o de +2a de
xx xx yy yy zz xy xy

(3)
+ 2cr de + 2o de a de

yz yz zx zx = ij

Similarly

= ~0

The strain energy of the body is then

U= ýUVdV (4)

In most problems it is convenient to express the strain energy in terms of internal forces
and displacements rather than stresses and strains. Appropriate expressions are given in
Section 2.

Potential Energy: The potential energy L of a body is defined as

L = U-Wt (5a)L -- t ,

where U is given by Eq. (4) and Wt is the loss in potential energy of the body forces over the
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1.7.2.1 (Cont' d)

total volume (assuming the body forces to be prescribed throughout the volume) and of the

surface tractions over that portion of the surface where the tractions are prescribed.

That is,

Wt B FiuidV t Stt.u.dS , (5b)

where St denotes that portion of the surface where the traction and not the displacements are

prescribed. This statement is amplified in Paragraph 1.7.2.3 where the principle of minimum
potential energy is discussed. Note that an elastic support may be considered to be part of the
structure so that displacements or tractions may still be prescribed on the boundary.

Complementary Potential Energy: The complementary potential energy L* is
defined as

L* =U* - Wu4u

where U* is the complementary strain energy of the body and (assuming the body forces to
be prescribed throughout the body) W is the loss in potential energy of the surface traction

u
over that portion of the surface, S where the displacement and not the traction is pre-
scribed. u

That is,

Wu=f t.u.dS• (5c)

u

1.7.2.2 Variational Techniques

Stationary Values: Application of minimum energy principles involves the defini-
tion of stationary values for functions or, more generally, functionals (integrals of functions).
A stationary condition is necessary in order that an extremum (maximum or minimum)
exist. In the case of a function f (x1,, x ... , xn), the conditions for a stationary value

at a point P are

1 2 n
P P

In the case of functionals, the problem is more complex. For example, given the functional

I (y) F (x,y,y') dx, where F is a given explicit function of x,y,y', the question may

be asked, what is the function y (x) (if it exists) which makes I&y) stationary where y(x ) and
y(xl) are prescribed? The aim of the calculus of variation is to solve problems such Rs this.

A typical procedure is shown as follows:
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1.7.2.2 (Cont'd)

Consider the integral

ýx0
i-fF (x, y, y', y) dx

and seek the function y = y (x) which makes I stationary where y and y' are prescribed at
x and x The existence of such a function is assumed and the effect on I is examined of a

aatioy in y by a small amount 6y where 6y =y' =0 at x=x 0 and x =x (Figure 1. 7.2.2-1).
0)

y

6y(x)

(x19y
Extremizing

Function

FIGURE 1.7.2.2-1 VARIATION OF EXTREMIZLNG FUNCTION

If I is an extremizing function, then

j Xl [ F y F 6 F Y, +f

68= .X [ - 6y B y' + ,6y" ] dx =0 (2)
xO

The left hand side is called the first variation of the integral I.

In order to eliminate the variations 5y' and 6y" from Eq. (2), the second and
third terms are integrated by parts:

r F 1F X1  1 FX6ydx= __a-,y - d (L, I ydx (3a)

0 Xo
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1.7.2.2 (Contd)

x•x
10 0 0(3b)

Xf1 d2  OF

Because of the assumed boundary conditions, the bracketed terms in (3a) and (3b) vanish so
that

f, [F d d2 8F
6=d F +_ d+ -" 6ydx =0 (4)

0 d2

The above Integral must vanish for all admissible 6y, which requires that the expression in
the bracket of Eq. (4) be zero, i.e.,

2OF d O2F d OF(,• d •)+ x , 0 .(5)

This differential equation is known as the Euler 0ifferential equation from which the function

y can be determined.

1.7.2.3 Minimum Potential Energy

The functional called potential energy was defined in Paragraph 1.7.2.1. We now
state the following important theorem for elastic bodies:

Theorem of Minimum Potential Energy: Of all compatible displacements for a
stable structure satisfying given displacement boundary conditions, those which satisfy the
equilibrium equations make the potential energy, L, a minimum. The converse theorem, which
is the one used most often, is as follows:

"t"Of all the displacements satisfying the boundary conditions, those which make the

potential energy a minimum satisfy the equilibrium equations." The proofs of these theorems
and the other theorems discussed may be found in Reference 1-1.

Since the potential energy ( L = U - Wt) is a minimum for the true equilibrium

state, it must also be stationary, i.e.,

6L =(U-Wt)=o , (la)

where the quantities U and Wt are defined in Paragraph 1. 7. 2. 1. Equation (1) is stated quite

simply; however, a full understanding of its meaning requires further explanation. According to
Kirchhoff's Uniqueness Theorem, either the displacements or the tractions (but not both) must be
prescribed at each point of the boundary of the body. Variations of the potential energy, Eq. (la),
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1.7.2.3 (Cont' d)

are effected by varying the displacements only over those portions of the body where the
tractions are prescribed. The displacement variation must vanish over those portions of the
boundary where the displacements are prescribed. As a consequence, If the displacements
are given over the entire surface and there are no body forces (Wt = 0), then Eq. (la)
becomes

6U =0. (1b)

This is, in effect, a stationary (minimum) strain energy principle:

If there are no body forces present then, of all the arbitrary sets of continuous
displacements which satisfy the compatibility equations and the specified displacement con-
ditions over the entire boundary, those displacements which satisfy equilibrium make the
strain energy a local minimum with respect to neighboring displacements.

(Remark: Since variations of the potential energy are expressed in terms of the displace -
ments, the strain energy must be given in terms of displacements.)

Example: The following elementary problem illustrates the application of the
principle of minimum potential energy.

A cantilever beam of flexural rigidity EI is propped by an elastic spring with
spring constant K (force/unit of deflection). Find the end deflection A due to an applied
load P.

P
ElI

42K

FIGURE 1.7.2.3-1 ELASTICALLY PROPPED CANTILEVER BEAM

The internal (strain) energy for the beam-spring system, expressed in terms of
the end displacement is

U = + -- (see any elementary text on strength of materials).

213 2

According to the th.eorem, the loss In potential energy of the external loads Wt is taken
only over those pertions of the body where the forces are prescribed. In this problem the
only prescribed force is the end load P. Thus,
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1.7.2.3 (Cont' d)

Wt =PA,

so that

L=U-Wt•
L _ U- W t

=(2-E---+K --2- PA.
3 2

It follows from Eq. (la) that

6L=dL 6A M-1+K A 6A 0
6LjdA 3~~KA~]AO

The factor 6 A is arbitrary and, therefore, the bracketed term is zero, i. e.,

A P

M + K

Note that

d2LL 3E + K) (A) >0,dA2 (5A2 52 / .

d,&2 3

which establishes a minimum.

1. 7.2.4 Minimum Complementary Energy

Another important variational principle relates to the complementary energy
functional (L* = U* - Wu) defined in Paragraph 1. 7. 2. 1.

The Theorem of Minimum Complementary Energy: "Of all states of stress in a
stable structure satisfying equilibrium and given traction boundary conditions, that state
which satisfies compatibility requirements makes the complementary energy L* a
minimum."

Since the complementary energy Is a minimum for the compatible state, it must
also be stationary, i.e., ,

5L* = 6 (U*-)W ) 0 (la)

where the quantities U* and W are as defined In Paragraph 1.7.2. 1.

The strain energy, in this case, Is expressed in terms of the stresses or forces,
and variations of the complementary energy are effected by varying the stresses such that
tractions vary only over those portions of the surface where the displacements are prescribed.
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The stress variation must vanish over those portions of the boundary where the tractions are
prescribed. Consequently, if the tractions are given over the entire surface (Wu = 0 ) then
Eq. (la) becomes

6 U* = 0 (Ib)

Equation (1b) is known as The Minimum Strain Energy Theorem, which states:

"Of all arbitrary stress states which satisfy equilibrium and the specified tractions
over the entire boundary, that state which satisfies compatibility makes the complementary
strain energy a minimum." When a problem is linearly elastic U* = U.

Example: The theorem of minimum complementary energy will now be demon-
strated for the case of a beam on three supports.

A beam (constant EI) is Icaded and supported as shown in Figure 1. 7. 2. 4-1. It
is assumed that there is no displacement at the supports. The support reactions are to be
determined.
Solution: This is a statically indeterminate beam of 1 degree of indeterminancy. Let 2R
represent the center reaction. Because of symmetry, the other two reactions are equal to
W-R. External equilibrium of the structure is satisfied for all values of R. However, there
is only one value of R which will also satisfy compatibility conditions, i.e., that the slope is
continuous, and the displacement is zero at the middle support.

Since the loads are prescribed everywhere except at the supports, force variations,
according to the theorem, are permitted only at the supports where displacements are prescribed
as zero (W = 0 ). Thus the complemeptary strain energy, expressed in terms of the forces
must be a iinimum with respect to variations in R, i.e., 6 U* = 0, 6 2 U* > 0.

Considering only bending energy, the complementary strain energy

21 2 M2
U* = E-" dx=2 f - dix ,

0 u*= 0 2

where

i•M =(w-R)x ; Ox:x<L12

=i--Rx; _._
W1

or

U * = 2 2W- R)2 xRd) +

2EI 2EI

2
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•'* =• ( - -R w3 • =
El 12 W 1

W-R 2RW-R

FIGURE 1.7.2.4-1 BEAM WITH THREE SUPPORTS

Since SR is arbitrary, the bracketed expression is zero, which yields

11

The two end reactions are, therefore,

5W -R = T6 W

and the center reaction is

11
2R= -W .8

Note also that

4 3 [8U* = 13 (8 R)2 > 0
El 12 >02
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SECTION 2 - STRUCTURAL TECHNIQUES

The solution of the structural equations can be performed in many ways. The tech-
nique selected depends upon the type of problem, the type of boundary conditions, the com-
plexity and the required accuracy, etc. The problem is simplified if the structure is linear
and permits the addition of simple solutions to obtain the final solution.

The following symbols are used throughout this section:

a,b,i,j,k,r Degrees of freedom of a structure
f. Internal axial load in beam due to a unit load at "i"
1

r rf. Deflection at "i" due to a unit load at "j" with respect to a datum at "r"

k Moduius of rupture factor = Mult. /Melastic
m. Internal moment in beam due to a unit load at "i"

n Unit normal to bcunding surface
n x, n ynx Direction cosines of normal with x, y, z axes

qi Internal torque in beam due to a unit load at "i"

r Distance from origin in polar coordinates; distance from shear center
u i Generalized displacement

6u Arbitrary displacement satisfying compatibility
u, v, w Displacement in x, y, z direction
v iInternal transverse shear due to unit load at 'fi"

x,y,z Coordinates in x,y, z directions
y Distance in beam cross section from neutral axis

A Area
A Effective transverse shear area
E Linear modulus of materialF. Surface or body force acting in x i direction

5 •Arbitrary f.arce system satisfying equilibrium
G Linear sbear modulus
SI Moment of inertia of cross section
!K3i Load at "j" due to a unit (virtual) displacement at "i"

L Length of beam
M Internal moment due to applied loads
P Internal axial load due to applied loads
Q Internal torque load due to applied load
T Temperature

Internal strain energy = f .. d0.. dV

4 U* Complementary strain energy = Cvf t e i doai dV

V Transverse shear load; volume; potential for a conservative force system
W Loss in potential energy of surface tractions and body forces
6 W E 6 5W Change in potential due to a virtual displacement
5 W• 6 W* Change in complementary potential due to a virtual force system

WADD TR 60-517 2.3
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AE Axial stiffness of cross section f E5 dA

AvG Transverse shear stiffness of cross section = GS dAV

El Bending stiffness of cross section = fES y2 dA

JG Torsional stiffness of cross section = f Gs r 2 dA

0 Linear coefficient of thermal expansion
Y Average shear strain - transverse shear displacement per unit length
6 Incremental operator
6 Krcnecker delta = 1 if i = J

0ifl
Deflection at "i"
Strain

C xC ;C Extensional strainsxx yy zz
,;fyz;e Shear strains

SM %.a d -T Axial strain of cross section due to applied loads and tem perature, respectively

E Polar coordinate - angle between r and x axis
11i Rotation at "i"

KM and KT Curvature of cross section due to applied loads and temperature, respectively

Transformation matrix converting applied loads to loads on the substructures
V Poisson' s ratio
a Stress
a Stress on plane perpendicular to x axis and in y directionxy
T Torsion - change in twist of cross section per unit length
Vp Airy function
V Gradient operator

Subscripts

a,b,i,j Pertaining to degrees of freedom a, b, i, J
i,j Pertaining to xi, x directionsJ
r Pertaining to datum structure
A Pertaining to axial energy, stresses or strains; allowable
B Body
M Pertaining to bending energy; deformation due to mechanical loads
Q Pertaining to torsional energy, stresses or strains
S Surface; secant modulus
T Deformation due to temperature
V Pertaining to transverse shear energy, stresses or strains

Superscripts

1, 2 Substructure
Pertaining to a rotational degree of freedom (e.g., b')
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2.1 LINEAR STRUCTURES

If the structural response to mechanical and thermal loads is directly proportion-
al to these loads and independent of past history, the structure is said to be linear elastic.
For a linear elastic structure, it is possible to solve the general structural problem by the
solution of a few unit-type problems, and to add these solutions to obtain the final complete
solution. The technique is that each unit solution shall satisfy equilibrium and compatibility
and, when superposed upon each other, satisfy the given boundary conditions. Thus, it is
possible to remove boundary conditions and solve for the new structure and superpose self-
equilibrating force systems which will have the net effect of satisfying the boundary conditions
(flexibility method). It is also possible to divide the structure into smaller sub-structures,
solve each sub-structure and impose compatibility conditions to satisfy the boundary condi-
tions of the over-all structure and the sub-structures (stiffness method). These techniques
are illustrated in the flexibility and stiffness coefficient methods of Sub-section 4. 3 and are
derivable from the "Principle of Virtual Work" discussed in P,. agraph 1.7. 1.

No structure is truly linear elastic with respect to thermal stimulation since the
stiffness of the structure will change with temperature. The structure can be treated as
linear elastic, for approximate solutions, where the changes in temperature or stresses
are not severe enough to significantly change the stiffness of the material and where the
strains are small and geometry changes can be ignored.

2.1.1 Virtual Work Techniques

As a consequence of the reciprocal theorem (Paragraph 1.7. 1), the loss in poten-
tial energy of the body and surface forces acting on a structure in its true equilibrium state,
due to a compatible set of arbitrary virtual displacements (not necessarily satisfying any
displacement boundary conditions), is equal to the gain in strain energy. In equation form,

6U= 6W W, (1)

where 6 U= 0 edV

6W= fF6u dV+f½6uidS

In addition, the loss of complementary potential energy of the body and surface forces acting,
on a structure in its true equilibrium state, due to a self-equilibrating set of arbitrary virtual
forces or stresses (not necessarily satisfying traction boundary conditions) is equal to the gain
in complementary strain energy, i.e.,

6U* =W* =•6Wu (2)

where
6U* = •oV

fBE d
6W*= fBui6FidV+ sui6tidS

An inequality results if the structure is not in its true equilibrium state.

2. 1.1.1 Virtual Forces

Figure 2.1.1. 1-1(a) shows a body in equilibrium under the force systems F and Fk
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2. 1. 1. 1 (Cont' d)

F4• /
/ Lr. Original Boundary

I kDeformed Boundary

4k

F kr

(a) Deformed Structure

•2

WAD F 1  6

/ F

F- k

FIGURE 2. 1.1.1-1 BODJY UNDER LOAD
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2.1.1.1 (Cont'd)

"Determine the displacement in some chosen direction of point i. To do this, apply a unit
force 6F. = 1, acting at the point in the chosen direction (Figure 2.1.1.1-1(b), and react

this force by 6F r This force ystem is in equilibrium and thus satisfies the requirements

of a virtual force system. From Eq. (2) of Paragraph 2.1. 1,

6U* W*= 1 - u. 6F u (Ia)I1 r r

If the reaction points of 65F are chosen as the datum with respect to which the deflection is
r

to be measured, then u = 0 and
r

6 U* =u =J 6udV (1b)
B

The deflection can always be measured with respect to a datum defined by the
reaction points for the applied virtual load. Statically determinate virtual reactions at
points which are reactions for the actual statically indeterminate structure will always
yield deflections with respect to the structural datum with a minimum amount of calcula-
tion. A rigid body correction must be made to determine the deflection of a point with
respect to a structural datum if the chosen datum is not the same as the structural datum.
The rigid body correction is the displacement of the chosen datum with respect to the
structural datum.

2. 1,1.2 Virtual Displacements

To determine a load F. which is in equilibrium with the force systems F and Fk

F Figure 2. 1. 1. 1-1(c)]1, a displacement 6u. = 1 is imposed in the direction of F. with corres-

"ponding arbitrary but compatible deformations throughout the body. This displacement sys-
tem satisfies the requirements of a virtual displacement system. From Eq. (1) of Paragraph

S~2.1.1,

6U= 6W= Fi 1 F. 6u. +Fk 6uk (la)

If the displacement system is chosen in such a manner that

6u 1 = cuk =0,

then

6 U= F. = 6 dV . (lb)¢B

The virtual displacement principle can also yield an alternate statement of the equili-
brium equations. To illustrate this, consider the beam of Figure 2. 1. 1. 2-1 to be subjected
to a rigid body virtual displacement in the vertical direction,

6u=l1

Since no straining occurs in a rigid body displacement,

6 U= f acdV=0,
B n

and n
6W= XFIU= 6u F •
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2.1.1.2 (Contt d)

However

6U= 6W,

which results in n

F. =0.i=l 1

The above is a statement of equilibrium of vertical forces.

Consider next a rigid body virtual rotation 6 0 1 about point 0.

Again

6U O

But n n

6W= Z F1 6x i 60 F xi
i=l i=1

Therefore, n

. Fixi =0,
i=1

which is a statement of equilibrium of moments.

- ---- --- --

--- ----- - - - -

6u

FIGURE 2.1.1.2-1 VERTICALLY WOADED BEAM IN EQUI-IBRIU11
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2.1.2 Strain Energy in Terms of Internal Loads and Deformations

It is most often convenient to express the strain energy of the body in terms of in-
ternal forces and the deformations of these forces rather than as stresses and strains. Con-
sider a body in equilibrium and compatibility under a given set of loads and a temperature
distribution. Cut the body into elemental volumes and apply tractions at the cuts which are
equal to those stresses which existed in the body before it was cut. These tractions are
exactly those necessary to insure a perfect fit between the elemental volumes. It can be
shown by the Divergence Theorem that the strain energy expressed b- these internal forces
acting through the displacement of the cuts is equal to the work done by the body and surface
forces acting through their displacement, and that the complementary strain energy is equal
to the complementary work of the body and surface forces.

Figure 2.1.2-1 illustrates a beam subjected to temperature and mechanical loads.
The equivalent internal loads and the deformation of the cross section are defined by an

T Y
Y ~ F

Sx Principal Axisr Mhear Center

z - - .\ Elastic Area
P Center (C. G.)

x Section B-Bx

FIGURE 2.1.2-1 BEAM UNDER LOAD

axial load P and an axial deformation per unit length of c + E- a bending moment A andM T' digmmnMad
a change in slope per unit length (curvature) of KM + KT; a twisting moment Q and a change

in twist per unit length (torsion) of T ; a transverse shear load V and a relative shear dis-
placement per unit length (shear strain) of 7. The subscript M implies the deformation as-
sociated with the mechanical load and the subscript T implies deformations associated with
temperature.

Assuming linear strains over the beam cross section, let

e = Axial strain
A

6 = Torsional shearing strain
Q

and
EV = Transverze shearing strain (may be nonlinear)
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2.1.2 (Cont'd)

These strains may be expressed in terms of the internal deformations by the relations

C M + T + KM + KT) yA= M T

C = Tr (1)

fGSeV dA= (AvG) ).

Similarly let

•A = xial stress

qQ = Torsional shearing stress

= Transverse shear stress.

These internal stresses can be expressed in terms of the internal loads by the relations
0A = ESEAA-aT) = E+ eT + (K + K y- Ca

ESLEM +T M T)

GS Qr(2a),7Q =GS C Q (2a)-

f TV dA= fGS eV dA= V

where

- pEM EA JG

fES aTdA
___ VT = V (2b)

EA V

KM= M

fEs EyaTdAKT=
KT El

and = JE Sy 2 dA

SE-A fEsdA

° = Gsr 2 dA (for circular sections only) (2c)

AVG= f GS dAv

= fE y dA

Evaluating the strain energy f f0o dedV and the complementary strain energy f EdodV

results in j
U = UA + UM + UQ + UV

S=_ + , + , + ,UV3a)
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2.1.2 (Cont'd)

where 00 M+C L PUA I=P('MITd UX =f (M+ET) dPdx
TPd(9-M+...)dx LMPd

LIKM+ T LOM
UM =f _Md(KM+KT)dX U = -( +KT) dMdx

00 MT 0f-K
L L Q b)

UQ = j Qdrdx U = rdQ dxUQf f Q -f f
Vdyd V fJLJf dV dx

In addition,

6U =f0  [{o P E6(M+ CT)} M{16 (K.+KTJ+ Q{6 T}11V{6Y I]dx (4a)

6 UL* J[IO1PI(EM +CT) -tOMI(KM+K T) +16QIT+t6VJsvjdx . (4b)

Thus, the change in strain energy is equivalent to the internal loads acting through the
change in the internal deformations. The change in complementary strain energy is equi-
valent to the internal deformations acting through the change in the internal loads.

Using expression (4b) and the virtual force technique, the displacement at some
point on the beam (when shear energy is neglected), is given by the expression

L L

u. 0 + KT) mi dx + f0( M+ CT)f. dx (5)

where 6M = m.6p = f.•

Beam deflections are further discussed in Paragraph 4.2.1.

2.1.3 Application of Virtual Force Technique - Flexibility Coefficient

The flexibility coefficient rf.. is defined as the deflection (or rotation) at point i

with respect to some datum r, when the structure is subjected to a unit load at point j and
reacted at points defining the datum r.

2.1.3.1 Flexibility Coefficient for a Beam-Like Structure

Using the virtual force technique and the equivalent loads and displacements for a
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2.1.3.1 (Cont t d)

6 beam-like structure, results in

mjm qjq1
f.. = i dx. 1

E--I -J- AVG

The deflection of the structure can be obtained by employing Eq. (5) of Paragraph
2.1.2 or by adding the effects of each load times the corresponding flexibility coefficient,

A, = Z f ij P. f where repeated indices indicate summation. (2)
jijf j Pi

When the structure is linear elastic, the values of AE, EI, JG, and AvG do not
change with load or temperature stimuli and linear simultaneous equations can be set up
to solve for the desired quantities (see Paragraph 4.2.4).

2.1.3.2 Addition of Flexibility Coefficients

Equation (1) of Paragraph 2.1.3.1 can be visualized as a group of springs in series.
The energy content of a spring is directly proportional to its flexibility and the approximation1 1 1
of ignoring all energies but the bending energy is equivalent to assuming 0 = - JG G
The flexibility of a structure can be analyzed by superposing the flexibilities of structures V
where all flexibilities except one are assumed zero as shown in Figure 2.1.3.2-1.

AXIAL BENDING TWIST SHEARLf.f.I
fijP -J E j i dx + 0 + 0 + 0 Axial Energy

Lm.m
f.ijM 0 + -] dx + 0 + 0 Bending EnergyfijM~ ~ = T+ 1

f. = 0 + 0 +f 1 dx + 0 Twisting Energy0 JG

0 + 0 + 0 +0 Lv dx %ear Energy

v

fij f iijP + ijM + fjQ + fi Total Energy

FIGURE 2.1.3.2-1 SUPERPOSITION OF FLEXIBILITIES

A structure (e.g., a cantilever) can be analyzed by the solutions of individual portions
(springs) which are then placed together by satisfying compatibility and equilibrium at eacb of the
common contacts. This is also equivalent to analyzing the over-all structure where all flexibi-
lities but one portion are identically zero and adding the solutions as shown in Figure 2.1.3.2-2.
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2.1.3.2 (Cont' d)

OR b
,M a b

(a) Actual Structure

1 - Ua booo ~ y a aU ,
Fa +Fb 1 •F

'(M+MbF L+ -Fb L) Mb

S• (FbL+M)
(F L Mb)

(b) Series Components of Actual Structure

LI

b *b

fb

+ Ma MbS+b

"Rigid a b

FM

(c) Supcrposable Equivalents

FIGURE 2.1.3.2-2 EQUIVALENT STRUCTURES IN SERIES
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2.1.3.2 (Cont' d)

In Figure 2.1.3.2-2(a) and -2 (b) the actual structure is shown to be equivalent
to two substructures 1 and 2 connected in series. Substructure 1 has the same displacement
datum as the actual structure, with end loads equal and opposite to the reactions of sub-
structure 2. Substructure 2 has the same loads as the actual structure but the displacements
are corrected for a rigid body motion corresponding to the translation and rotation (ua) of

the end of substructure 1. The same results and calculations would be obtained by adding the
solution of the two rigid flexible beam problems shown in Figure 2.1.3.2-2(c).

The elemental substructures are much easier to analyze than the over-all structure.
The loads on the substructures (F) are expressed in terms of the applied loads on the actual
structure (F) by means of the equilibrium equations.

{F=B ]fFl= 1010 F5

1 L 1 Ma (1)

010 Fb

The displacements of the actual structures can be similarly expressed in terms of the loads
and flexibility of substructures.

1 1A = f (F +F) + fa, (M +Mb +FbL)
a aa a b aa a+M b+F

a 1fat a (Fa+ Fb) + lfat a' (Ma * Mb + FbL) S(2)

a a+L + 2 fbb b bb, Mb

)b Oa fb'b b + fb'b' Mb

In matrix form:

a if if 1  1 + L F aaaa aa ~ aa +Lfaa' IaaII i I l"i

~~- - --- - -r - -- _- . . . . - _ _ -
laa fata a I faa +Lf +a 2a If +a2a M

f~ If fa +L 1f 2 Ii 2f
1i= aa aat  aa aat + fbb fat 'A bb?

+L I f.L +Lf +L I+L F
a' a a' a't a' a fa, aa a '

1 1 1A 1 2 1 2 Mfata I fat at fat a +L 1 ata + fbtb' fatat fbtb? bJ

[f I JFJJ (3)
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2.1.3. 2 (Cont' d)

The above influence coefficients of the actual structure can be expressed in terms of the
influence matrices of the substructures and the matrix expressing the loads on the sub-
structures in terms of the applied loads, as follows:

faa faaf 0 0

f a fat a' 0 0

[fi] = [A'] 0 0 2f [x] (4a)

2 2
0 0 2fbb 2fbIb'

where [Al'] is the transpose of [A].

The above transformation of the influence coefficients matrices of the substructures
to the influence matrix of the actual structure can be readily verified by utilizing the fact that
the total work done on the substructures is equal to the total work done on the actual structure.

Thus

But from (3)

{[f ]{F

therefore:

{Fij} [ ij~ {Fj} I {=fk} F (4b)

From Eq. (1),

{-fr} = {rj} {FJ}

so that

Substituting the above in Eq. (4b) yields

{ F'ý I [fij] { Fj} f {F'j[ý [ý] [An]j {Fj}

or

[fij] = [ki] [fKr] [rj]

F3
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2.1.4 Applications of Virtual Displacement Techniques

The loadR on the structure and the stiffness coefficients can be obtained by applying

the principle of virtual displacement. The stiffness coefficient K,1 is defined as the force (or
moment) at a point j when the structure is subjected to a unit displ9cement Rt point i.

2.1.4.1 Load on a Structure

Apply a virtual displacement pettern which does not -Aolate compatibility and is
unity at Fi and zero at all other points where other forces act (see Figure 2.1.1.1-1(c)).

From Eq. (lb) of Paragrapr, 2.1.1.2,

6U F,= a 6cdV.

For beam-like structures using the equivalent internal loads and deformation of

LEq. (4) of Paragraph 2.1.2,

6U=F =rf [P 5 - M 6K + Q6 T + V(5y)lIdx, 1

where the changes in the deformation are due to the virtual displacement and the loads acting
on the cross section constitute the self-equilibrating thermal stress system.

For beam-like structures the bending energy predominates and the following is obtained
as an approximation

L
F i M6 Kdx. (2)

Thus, to obtain the force at a point in the structure, evaluation of the virtual work due to the
virtual displacement is required. 2his is equal to the internal forces in the structure acting
through the virtual internal deformation. This procedure is employed in Section 9, "Stability of
Structures."

2.1.4.2 Stiffness Coefficients

Applying a displacement at point j causes loads to be generated at j and points where
displacements are kept zero. These forces are the counterpart of the flexibility coefficients
which give the deflection at points of interest due to a unit load at a given point and zero load
everywhere else. The stiffness coefficients are the loads at points of interest due to the unit

displacement at the given point and zero displacement a! the other points of interest. The
elements of the stiffness coefficients matrix are the loads which result in the unit deflection
matrix and can be obtained by inverting the flexibility coefficient matrix. The forces at the
datum can be obtained from the equilibrium equatior. Similarly, the influence coefficient I
matrix can be obtained by inverting the non-singular stiffness matrix. The non-singular matrix
is obtained by removing the elements associated with the datum of the structure.

(1a)
fij 1KJI

Sf -1 (1b)

f -11

The stiffness coefficients for an elemental beam can be obtaJned by inverting the flex-
ibility coefficients as shown in the following example.
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2.1.4.2 (Cont'd)

Example - Cantilever Beam of Constant El (Bending Energy Only):

a f L= I a Ina dx x2 L3
•'• -•• __•saEl = E0 l 3EI-'d

L
a f amaa L (2)

a f~ a EI

where prime (a') refers to rotational loads or displacements at point a.

L3 L 12 6E _
Kaa Kaa2 3 2 3 2

E L L (L3)

6E El L E 6 4
K K' L L 2  L

L 2

From equilibrium and symmetry the entire stiffness matrix can be obtained for the loads which
are required when a joint is moved a unit displacment and all other joints are fixed. Ibis is
shown in Table 2.1.4.2-1

TABLE 2.1.4.2-1 STIFFNESS COEFFICIENTS OF BEAM-LIKE STRUCTURE

Displacement at Joint

12EI 6EI 12EI 6EIL3 -- 2- 3 L2

t •) 6EI 4EI 6 El 2 El

2 L 2 L

LA L

]() 12EI 6EI 12EI 6EI

L 3 L 2 L 3 L 2

(), 6EI 2EI 6EI 4EI
L 2 L L 2 L

2.1.4.3 Addition of Stiffness Coefficients

If two or more elements of a structure have a common point (joint) of interest,
then the load necessary to obtain the displacement at that point is the sum of the forces
necessary to apply the displacement to each element. This is analogous to a set of springs
in parallel.
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2.1.4.3 (Cont' d)

It is important to maintain a sign convention wHich is invariant in space for the
stiffness coefficients since the forces of elements with a common point may be so oriented
that the load in the adjacent elements may be of opposite sign (References 2-1 and 2-2).

Coupled stiffness coefficients can be obtained by repeating basic stiffness coef-
ficients and adding those terms which are in common. Thus the stiffness at a joint is addi-
tive (the springs -are in parallel) and the total stiffness at a joint is the sum of the stiffnesses
of all members coming into the joint. This is shown in Table 2.1.4.3-1 and Figure 2.1.4.3-1.

TABLE 2.1.4-3-1. COUPLED STIFFNESS COEFFICIENTS

Displacement at Joint

00 I
12E11 6Ek 12Ei ik I

S3 2 3 2L• L LI L1!

6EliI 4E 1 1 6ElII 2EliI1
27 2 2 L1  I 0 0

L L L1

12L 6L 111  L1__ _____ __1 ___ __L3L26EL1h 26E21 1E 1  6 12E 212  4E1  4E2 6E22 2  12E2 2  6E212
3 2 L 2 2 2 3 2

L1  L1  L 1  L2 1  2  j L2

6E_1h 2E,1 1  6E I2 6E212  4E61 1  4E2I 2  E2E2 2  2E2! 2
3L 2 2 L 2L L2 1 2 L 2 22

I12Ef 6E I 12EI GE I
00- 22 22 2222003 2 3 2

2 ~ 2E21
9 0 E22 22 6E 2 I2  4E 2 I20 2 2 LL2 L2 LL

22 2 2
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2.1.4.3 (Cost'd)

12E 1

3
L I

7 ~6E 1'

+J
6E 1  2Ei1

1__1 1 1
2 L

L1

12E 1  12E I 6E 11  6E2I
1h 22 E__ 2'2

3 3 2 2
1 L2,

-E211 4E 212
A A 11

6E1 6E12 L1 L2

L12 2L2

1 2

-- I2

12E 2 I2  6E212

L222
3 2

6E ~ _L_ 2E 1 2
36E 212 2 2

LL
2

FIGURE 2.1.4.3-1 STIFFNESS COEFFICIENTS FOR A DOUBLE BEAM

2.1.5 Properties of Influence Coefficients Matrix

The influence (flexibility and stiffness) coefficients are utilized in the solution of
indeterminate structures (e.g., Sub-section 4.3). The coefficients can be obtained by calcula-
tion (References 2-1 and 2-3) or by experimental techniques. It is possible to employ available
structural relationships to simplify or check the calculation or experimental determination of
these coefficients. The resalts are presented for flexibility coefficients but apply equally well
to stiffness coefficients.
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2.1.5.1 Symmetry

The deformation of a point I due to a unit load •tt a second point j is equal to the de-
formation of the second point j due to a unit load at the original point I. The deformation
(linear or rotational) at a point corresponds to the type of load (force or moment) at the other
point.

fiJ =fji (la)

"Aj =Ai ; i'=i (ib)

e. = A.. ; O A j , (ic)
ijt 13

where Aij = linear displacemement at i due to unit linear load at J

oi = rotational displacement at i due to unit load at j

A.., = linear displacement at I due to a unit moment at j

= rotational displacement at i due to unit moment at j
The symmetry of the matrix is evident by noting the equivalence of the energy terms

similar to f xs aL (mi)(mj) dxL (m )(mi)

0dx = oJ dx .

This symmetry can be utilized to reduce the number of calculations or to average the

experimental results.

2.1.5.2 Positive Definiteness

The fact that each structure absorbs energy in deforming requires that the displace-
ment of a point on a structure cannot have a component which is opposite to fie direction of the
applied load. This is demonstrated by the positiveness of the energy terms similar totL(mil2 dx

EI) . Thus the influence coefficient defining the deflection of a point due to a load at

that point must never be negative (always positive except for the reaction for which it is zero).
Thus the main diagonal of the influence coefficient matrix must be non-negative,

f.. > 0. (1)
11

Another relationship derivable from the positive definiteness of the structural matrix
is that the product of two main diagonal elements must never be less than the square of the cor-
responding off-diagonal element.

"'" fii 2t (f iJ)2 (2)

This is evident from the Schwartz inequality,

Ef I )(m ) d (dx) (3)
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2.1.5.2 (Cont'd)

The positive definiteness property can be employed to check on the accuracy of the
experimentally determined values.

2.1.6 Equivalent Thermal Load

The linear elastic structure permits a solution by the superposition of various
loading conditions as long as the total effects add up to the original problem. This approach
is particularly adaptable to structures subjected to temperature. The effect of a temperature
is to cause an axial expansion of each elemental volume of the structure. The stresses which
arise due to temperature are the self-equilibrating stresses necessary to make each elemental
volume compatible with the adjacent elemental volumes and the boundary conditions.

There are basically two methods of solving the equivalent mechanical loading pro-
blem for the linear-elastic structure subjected to both temperature and mechanical loading.
In each method, the structure is first decomposed into elemental units. The behavior of
each elemental unit for temperature and mechanical loading is readily determinable. In the
first method, the elemental units are permitted to deform independently of each other and the
displacement of the boundaries of adjacent elemental units are observed. Attempt is then made
to put the decomposed structure together again. This requires that the elemental boundaries
be compatible with each other. Self-equilibrating force systems (internal forces) are applied,
wherever necessary, at adjacent boundaries to guarantee compatibility. For beam-like struc-
tures, this is called the flexibility method. In the second method, the elements are restrained
from deforming when subjected to the temperature and load by infinitely rigid restraints. The
mechanical loads generated at the restraints are supplied by the structure if this restraint
actually exists. If the restraint does not exist then the boundaries of the elemental units are
permitted to deform (always maintaining compatability) until the load in the artificial restraint
vanishes. For beam-like structures, this is called the stiffness method. These techniques are
described for beam-like structures in Sub-section 4-3.

The solution for beam-like structural units is usually expressed as influence coef-
ficients, that is, in terms of the deformation due to unit type loading, or the loading due to a
unit type deformation. It is advantageous, therefore, to convert a thermal loading to an equiva-
lent mechanical loading so as to treat a temperature problem as an equivalent mechanical pro-
blem and simplify the amount and type of calculations. All the structural techniques available
for mechanical loads could then be employed to solve the structure subjected to mechanical
loads and temperature.

2.1.6.1 Three Dimensional Hydrostatic Loading

Assume that the body is cut into elemental volumes which are then supported with
infinitely rigid restraints so that compatibility between the elemental volumes is maintained.
Application of temperature distribution to the structure will now try to expand these elemental
volumes which will be counteracted by hydrostatic stresses equal to - - 2 at the artificialI - 2z/

-EcaVT
restraints. The artificial restraints must supply the difference 1 - 21/ of the restraining

hydrostatic stress loads applied to adjacent elemental volumes. Since the restraints are arti-
ficial, the structure must be allowed to deform so as to balance out these "equivalent body
forces." By this means the original problem has been changed into two problems. The stressc.

in the first problem of the artificially restrained body are simply:

WADD TR 60-517 2.21

- ~ --.-. 
"I- =



IIt
2.1.6.1 (Cont' d)

a (1 a~ EaT
xx yy zz 1 -21.V

(1)1o 1 1
a = -or a 0
xy yz zx

The second problem is the classical linear elastic problem with body forces
which are proportional to the thermal gradient.

F Ea 3
x 1-2z2 ax

F Ea 8T
y 1-2v Dy (2)

FEct aTz 1-2Y/ az

and the boundary conditions,

+ y + 2 o EaT
,ox yy xz z 1 -2y x

2a. + 2 o n + on = n T3) (3
yxx yyy yz z 1-2v y

2a
z + 2o + 2 .n = EaT

zy zzz 1-2v

The equilibrium equations,

a a)(2 ) (2

)x a 2 ._ _ _

+ vy + - E2 y =0  (4)

2 +-,-(2x + 1 - E2 OTY a
aO y &z 1- 2v ay

and the strain displacement (or compatibility) equations (Paragraph 1.1), together with the
stress-strain relations (Paragraph 1.4), provide the necessary and sufficient equations for
a solution.

The final solution is the sum of the individual solutions,

1 2 s
S+20 (5)

Thus the temperature problem is the mechanical equivalent of applying a hydro-
static loading, proportional to the temperature, to all the elements and the boundary of the
structure and then apply body forces to the structure, equivalent t, th. gradient of the hydro-

static loading, along with boundary forces which negate the 1 boundar 'y forces.
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2.1.6.2 Fixed End Beam Reactions

If the behavior of the elemental structures when subjected to mechanical and
thermal loads is known (e. g., determinate beams of Section 4) within acceptable engineering

accuracy, the artificial restraints (Jacks) -.eed not be constructed at each elemental volume
but only at the common boundaries (joints) of these larger elemental structures. First the
thermal stimulation is applied to the structure. Each joint of the elemental beams will tend
to deform but will be restrained by the artificial Jacks. The loads introduced in the artificial
jacks are commonly termed fixed end reactions. The artificial jacks must supply the unbalance
of the fixed end reactions coming into the common joint from the various structural elements.
The original structural problem is thereby reduced to two simpler problems. The first ',ro-
blem is the solution of the elemental (fixed end) beams which are restrained from any motion
at the ends. The solution of this type of problem is indicated in Sub-section 4.2. The second
problem is the deformation necessary to eliminate the artificial restraints and internal loads
in a structure with mechanical loads equal to the negative of the unbalanced fixed end reactions
acting at each joint. The solution of this type problem is indicated in Sub-section 4.3. The
solution of the original problem is thus the sum of the solutions of the two simpler problems.
Reference 2-2 indicates that the deformation at the joints of the structure, due to the applied
temperatures and loads, is identical to those calculated by the equivalent fixed end reactions.
The relative deformations of the elemental beams between the joints must be added to the joint
deformations to obtain the total deformations.

2.1.7 Plane Stress and Plane Strain Problem

The three dimensional problem, in general, requires the determination of 15 quanti-
ties (6 stress, 6 strain, and 3 displacements), given the body forces and the boundary
conditions. This problem can be greatly simplified if the given geometry or loading makes some
of the unknown quantities zero (or insignificant). This is the case in the plane strain and plane
stress problems.

The state of plane strain is defined as one in which the displacement component in a
given direction is zero (e.g., z di, ection, w = 0) and the other displacement components are
independent of this direction (u z = v z = 0). This condition arises in a long (axial dimen-
sion large with respect to cross sectional dimensions) prismatic body under loads and tem-
peratures which are independent of the axial coordinates.

The state of plane stress is defined as one in which the stresses acting on faces

parallel to a given plane are zero. This condition arises in a short (axial dimension small

with respect to cross sectional dimensions) prismatic body, e.g., a flat plate, whose face
are unrestrained and unloaded. The axial dimension is sufficiently small so that the axial
stress cannot change significantly.

Solutions can be obtained by an "Airy" function which satisfies the equation of
equilibrium identically and is made to satisfy the compatibility equations. A general
solution can be obtained by the sum of such functions (which also satisfies compatibility
and equilibrium) and whose total boundary condition duplicates the actual boundary con-
dition. The St. Venant' s principle (Paragraph 2.1.8) can be employed to obtain approxi-
mate solutions which are satisifactory at distances away from the area where the boundary
conditions are not satisfied identically.

2.1.7.1 Plane Strain

The technique is demonstrated for a rectangular coordinate system out is equally
applicable to other orthogonal systems.
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2.1.7.1 (Cont d)

Plane strain is defined by the condition w = 0; u = u(x,y) ; v = v(x,y).

From Table 1.6-1 the following strain conditions are obtained:

EC = x xxy) ; E = Xy x,y); Ix = (x'y)'cc ocYY yy xy xy

42 I E =0.(1zz =xz yz

Assume that the body forces are derivable from a potential function (-V), (e.g., gravity,
temperature, etc.). Thus -V F,x x

From Table 1.6-2, since a = = 0, the equilibrium equations are obtained,
yz xz

(xx -V) x +yx'y 0 (2a)

, + (a - V), = 0. (2b)
xy, x yy

From Eq. (1) of Paragraph 1.1.1 the compatibility equations reduce to

xx,yy + 4yy,x -x 2 xy,y = 0, (3)

and from a linear stress-strain relationship this becomes

E 1V0 -V ac Jo ] 2 c l=0 (4)E (1• xx •yy ,yy yy xx ,'xx - xy,xyI

The Airy function (pis defined as

Ux -v = ,yy, U -V 9',xx -x = ',x' (5)

which satisifies the equilibrium equations identically and substituting (5) in (4) results in
0+ 2+ V, +I- +I +V , (6a)
0 D = ,xx 2OxxyT Y yyyy V ,xx ,yy

or

V4 ( 1 --2- V2  = 0 (6b)

which satisfies the elastic compatibility condition.

An Airy function satisfies the equations of equilibrium and linear compatibility
and each one will determine characteristic boundary conditions.

The potential (-V) can be viewed as the restraint forces generated by the artificial
restraints to maintain compatibility by restraining the elemental volumes when stimulated by
load or temperature. In a gravity field it is simply the density and in a temperature ield it

is the hydrostatic stress ( -

The temperature problem reduces to

v 4 9 + E V 2 T=O N
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2.1.7.1 (Cont' d)

and for zero mechanical boundary tractions,

S= = o. (8)

211
In polar coordinates, V T =T + r T +- T (9a),rr r ,r r 2  GO

and

24 2 + 1
2+ r - 2+ 2 41. (9b)

ar r a2

The total solution is the sum of the stresses obtained from the above formulation with

the stresses from the restrained conditions 01 =y = z - EaT

2. 1.7.2 Plane Stress

o•Ya ned In the case of plane stress, the technique is similar. Utilizing a_ = a i
and the equilibrium, compatibility, and stress-strain relationship, tf foilwO g isS~offalned:

S(4 12 )

For thermal stimulation it is no longer necessary to restrain the thermal ex-
pansion in the axial (z) direction since the structure is free to expand in this direction.
The necessary artificial restraints are just the xz and yz planes without the xy plane.

The potential or equivalent hydrostatic pressure becomes (-V) = -c 1 The
thermal plane stress problem then becomes

V 4  + cE V2 T = 0 , (2)

¶ and for zero mechanical boundary tractions,

0•= , 0. (3)

The total solution is the sum of the stresses obtained from the above formulation with

the stresses from the restrained conditions a = - EaT
yy 1-v

2.1.8 St. Venant' s Principle

In many instances the solution to the problem can be simplified by obtaining an
approximate solution In which the surface tractions (which may be impossible to prescribe)
are not satisfied identically. In general, the engineer only knows the resultant force and
not the traction distribution. "If the local applied tractions are replaced by a statically
equivalent load system, then the solution will be satisfactory at points sufficiently removed
from the region of application of the local tractions." This is known as the "St. Venant' s
Principle" and is extremely useful when the exact solution is too complex (or may not be
solvable with available mathematical tools). This principle is employed in Section 4 % here
the zero tractions on the free end of the thermoelastic beam were replaced by a self-equili-
brating thermal stress system. The solutions are satisfactory at a cross section away
(approximately 2 to 3 depths) from the free end and a local approximation is employed in
the vicinity of the free end rather than attempting an exact solution.
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2.2 NON-LINEAR STRUCTURES

The necessary conditions that a structure will be linear-elastic in going from its
original state to its final state is seldom fully realized in an actual airframe design where
minimum weight is required.

The advent of high speed venicles has forced the designer of airframe structures
to re-assess the non-linear effects of stress, temperature and time upon the structural
material. Formerly the design was based on a linear elastic analysis of the structure be-
cause of the simplicity and wealth of analyses in the literature employing classical
"elasticity" (linear) theories.

An examination of experimental data, however, revealed some discrepancies between
the linear analyses and the actual results. In some cases the analysis underestimated the
maximum load while in other instances it overestimated the load.

The problem of a beam in bending is a well known example of underestimating the
maximum load. The classical linear theory results in a stress distribution which is propor-

tional to the distance from the neutral axis (or - ) and the maximum allowable momentI (A

(MA) would occur when the maximum allowable stress (arA) is attained M = 1

This value, obtained by assuming a stress distribution, is significantly lower than t!& experi-
Or I

mental value of MA = k A (modulus of rupture) by a factor of k > 1 whica de-
SYmiax

pends upon the geometry and the stress-strain curve of the material. The discrepancy is pri-
marily due to the fact that the linear analysis results in a significant stress gradient which will
be reduced as the stresses approach the maximum allowable stress due to the actual stress-
strain curve of the matt rial. Additional examples are stress-concentrations, thermal stresses,
interaction stresses of shells, etc. The problem of the buckling of a structure is a well known
example of overestimating the maximum load. The classical linear theory assumes a stress
distribution with a constant upper bound on the modulus. The calculated value can be signif-
icantly above the actual value which depends upon the stress level and the stress gradient. This
is qualitatively discussed in Section 9 on the effect of plasticity and eccentricity upon stability.
Additional examples of overestimating maximum 16ad is the ignoring of stress concentrations,
fatigue damage, etc.

The designer was forced, therefore, to modify the linear analysis by introducing a
plasticity factor to account for the non-linearity of the stress-strain relationship. This pro-
cedure is fairly successful when the effects of time and thermal gradients are negligible and
the non-linear behavior of the structure can be estimated from the experimentally determined
uniaxial (short-time) stress-strain relationship at the design temperature.

The problem of the effects of a general stress-temperature-time history upon a structure
is quite oomplex and available analyses are usually lacking in reliability and ease of application.
Attempts to employ modified linear procedures are fraughtwith danger and may lead to excessive
errors in estimating the life of a structure. The errors can occur in either direction; either in
underestimating the structural life and resulting in an excessively heavy structure, or in over-
estimating the structural life which would cause a premature failure. Any attempt to experi-
mentally determine adequate empirical analysis procedures would be defeated by the tremendous
amount of test time and the high costs necessary to determine the effect of all possible stress-
temperattwe-time histories upon various geometric configurations. The time available to do
this experimental work before a design must be selected would be far from adequate in the rapidly
idvancing technology of materials, structures, etc. It is imperative, therefore, that all analysis
nethods be based on fundamental concepts and simple procedures which best approximate the
tvailable experimental data. The empirical design factors should be obtainable with as little
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2.2 (Cont' d)

experimental data as possible and the analysis procedures should be presented in as simple
a manner as possible to minimize the amount of labor required to analyze the structure. A
non-dimensional approach should be investigated in order to reduce the amount of experi-
mental data and analysis curves required.

An incremental time technique as described in Section 1 can be employed in special
cases. In general, however, the amount of necessary computations will be prohibitive.
Approximations based on deformation theory could be attempted to make the problem solvable
and the approximations would give a clue as to whether the solution overestimates or under-
estimates the true behavior of the structure. The effect of approximations (neglecting
energies, approximating variables by constants, additional assumptions, etc.) can be more
readily evaluated by simplifying the non-linear general equations than by trying to modify
the solutions of over-simplified linear equations.

The equations of equilibrium and of compatibility, it was shown, do not depend upon
a stress-strain relationship. They can be obtained from energy principles alone (virtual
work). The equations of equilibrium are basically a relationship of the stresses, and the
equations of compatibility are a relationship of strains. The stress-strain relationships
are the additional conditions necessary to combine the equations cf equiibrum and com-
patibility in terms of the stresses or strains alone. The material behavior is discussed
in Section 3 to obtain reasonable and non-dimensional stress-strain relationships.

Methods of analyzing non-linear structures are briefly discussed in the following
paragraphs. Most non-linear problems are considered beyond the present scope of this
Manual. The non-linear problem of stability is presented in more detail in Section 9 be-
cause of the great need, the utility, and availability of approximate methods.

2.2.1 Incremental Linear Solutions

Incremental linear solutions were briefly discussed in Section 1. The technique
will give the correct results.provided the incremental history is sufficiently small and the
structure is elastic. An elastic structure may be linear or non-linear and is defined by
a stress-strain relationship which is uniquely defined so that a reversal of stress remains
on the initial loading curves. The incremental technique is equivalent to approximating the
stress-strain relationship by a series of straight lines and solving a set of linear elastic
structures with different geometries and stiffnesses. The necessity for recalculating the
geometry or including higher derivatives depends upon the effect of these parameters and
the required accuracy. The amount of calculation and accuracy are inversely related and
good judgement is necessary to obtain a sufficiently accurate solution without prohibitively
large numbers of calculations. This technique can be readily adapted to a digital or analog
type of calculation machine.

2.2.2 Inverse Solution

The inverse technique can be employed to solve for the loading conditions which
result from an assumed displacement and corresponding compatible strain distribution.
This technique can be applied to linear or non-linear problems. The stress distribution
and the loading can be obtained byutilizing the known stress-strain (linear or non-linear)
relationship with the assumed strain distribution. The St. Venant principle (Paragraph 2.1.8)
can be employed to extend the solution to structures in which the boundary loadings are not
identical but statically equivalent.
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2. 2. 2 (Cont' d)
In many cases it is possible to determine the correct displacement or strain

distribition pattern by employing the principle of minimum complementary potential
(Paragraph 1.7.2.4). This procedure was utilized in Reference 2-4 to prove the existence
of a linear axial strain distribution in a prismatic beam subjected to terminal loads.
General solutions can be obtained for beams subjected to axial loads, transverse loads
and moments by assuming linear axial strain distributions and employing non-dimensional
stress-strain relationships (Section 3). The applied load can then be plotted versus a suit-
able strain parameter for various material parameters.

Assuming Airy functions (Paragraphs 2.1.7.1 and 2.1.7.2) results in inverse solu-
tions of the linear plane strain and plane stress problems for the boundary conditions satis-
fied by the Airy functions. A combination of several Airy functions can sometimes be
employed to obtain boundary conditions sufficiently close to the actual boundary conditions.

The inverse technique is the upper bound approximation technique described in
Paragraph 2.2.3. When the correct strain distribution pattern is assumed, the approxi-
mation solution is the correct solution.

2.2.3 Approximate Solutions

The principles of minimum potential and complementary potential energy as de-
scribed in Paragraphs 1.7.2.3 and 1.7.2.4 do not depend upon the stress-strain relation-
ship. They can be employed to obtain upper and lower bounds to the solution of linear or
non-linear problems. For example, assuming an incorrect displacement or strain distri-
bution which satisfies compatibility and the boundary displacement conditions will under-
estimate the stiffness of the structure, i.e., will overestimate the strain energy (expressed
in terms of the disDlacements) as weil as the work done by the surface and body forces. If
a virtual displacement is now applied to the incorrectly assumed displacement pattern, the
calculated change in strain energy Is greater than the work done by the true forces in acting
through this virtual displacement. If only one force is acting (.e.g., axial load on column),
the calculations will result in an upper bound of the applied force if the change of strain
energy is expressed in terms of the displacements. If the change of strain energy can be
expressed in terms of the forces, a lower bound of the applied force can be calculated.

Assuming an incorrect force or stress distribution, which satisfies equilibrium and
the boundary force conditions, will overestimate the stiffness of the structure, i.e., will
overer.timate the complementary strain energy (expressed in terms of the stresses) as well
as the complementary work done by the surface and body forces. Applying a virtual force
system to the incorrectly assumed force system can result in a lower or upper bound on the
displacement by expressing the change of complementary strain energy in terms of the forces
or displacements, respectively.

The above techniques are employed in obtaining the stability of structures (Section 9).
They can also be employed to analyze plastic beams subjected to axial and bending loads (in
which linear strain distributions are assumed across the beam cross section). Another
application is the determination of an upper bound to the ultimate load of an axial tension
member subjected to a stress concentration such as a hole. The strain distribution which
corresponds to the linear elastic solution to the problem satisfies compatibility even when
multiplied by an arbitrary constant. Employing this strain distribution with a non-linear
stress-strain relationship, such as.presented in Section 3, will result in stresses and an
integrated axial load. Assuming a maximum strain criterion of failure will result in an
upper bound on the axial load when the maximum strain is attained at the "stress" concen-
tration.

4
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F SECTION 3 - MATERIAL CONCEPTS

The ability of a structure to withstand the applied loads is dependent upon the material
properties as well as the structure geometry. The material properties are sensitive to the
type and magnitude of loading, the temperature, and the chronological history (time) of these
factors. The problem would not be so complex if the principle of superposition could be ap-
plied. Unfortunately, this Is only approximately true and then for only small stresses, tem-
peratures and times.

In general, the structural stiffness will be different from point to point in the structure
and will change with load (stress). temperature, and time. The structure becomes an ex-
ceedingly difficult non-linear problem. Recourse is made to deformation theory and approxi-
mate methods to solve the problem as if a series of incremental changes occur, each of which
is a line:." problem with a unique solution until the total loading history is applied.

The exceedingly large number of materials and load-temperature-time histories that
are possible makes it absolutely imperative to try to represent the behaviour of structural
materials as functions of a iew material parameters. From a practical design analysis point
of view, it is desirable to limit the number of parameters while still retaining an acbeptable
engineering approximation to the strain relationship. This would permit a relatively simple
mathematical expression to interrelate the equilibrium and compatibility equations of Section 1
(which are independent of the stress-strain relationship) to obtain structural solutions. It is
also desirable to present the strain relationship in a non-dimensional form to minimize the
computational work and to permit non-dimensional graphical solutions of the structural problem.
This technique can be utilized in the design of a structure with minimum guaranteed properties.

The stress-strain relationship suggested in this manual is predicated upon empirical re-
lationships which approximate experimental data. A deformation mechanism is assumed whichdoes not contradict experimental evidence and which leads to three (temperature dependen')
parameters for the short time stress-strain relationship and in addition, two additional para-
meters to include the effects of time. Methods of determining these parameters from simple
test data are indicated.

The following symbols are used throughout this section:

t Time, seconds
C Short time (instantaneous) measure of slip (CIKT sinh ar/6) in which no primary

1 T 0
or secondary -'reep occurs, non-dimensional

02 Measure of primary creep (C2(1-e) KT slnh a/a) due to "relaxation," etc.
non dimensional

C3 Measure of secondary creep (C3 t KT sinh a/%r0 ) as the rate of "strain hardening"
is balanced by the rate of "softening by recrystallization," 1/sec

C4 Material constant representing the number of particles per unit time exceeding
the thermal potential barrier

E Elastic modulus (material-temperature parameter) associated with hydrostatic
stress and dilation, psi

EA Apparent elastic modulus of material (obtained from short time stress-strain
curve), psi

E Secant modulus = ale (psi)
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ET Tangent modulus = do/d e (psi)

K Time-temperature work hardenability material parameter directly proportional
to slip = (Kt) (KT). non-dimensional
Time component of K, non-dimensional

KT Temperature component of K, non-dim ensional

KT C4e Q/T (Suggested by Maxwell-Boltzmann Energy Distribution, Reference 3-2)

L. M. Larson-Miller parameter = T (C + log t)
Q Material constant - activation energy per gram atom divided by the universal gas

constant, °K

KE =temperature, time, material parameter (f = 0 elastic material;
A/fo= I viscous material)

6 Deviation =e-O/EA

AU Stress increment
C Strain, In/in
t Strain rate, in/in/sec (dot over symbol indicates derivative with respect to

time, e.g., kt, &)

E Instantaneous strain due to stress= qiE + CIKT sinh ir/ , In/in

ar Applied stress, psi
Stress associated with slip. This is a material -temperature parameter which is
a function of the past history of the material, i.e. , stress-temperature-time, etc.,
psi

Subscripts

1,2,3, Principal directions
I, II, I1 Invariant values of stress and strainI Dummy index

Superscripts

Prime Deviations, e.g.; a' and C'1
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3.1 DEFORMATION MECHANISM

Deformation is viewed as the movement of atoms from one equilibrium position to
another. The energy potential necessary to overcome the potential barrier, i. e., to ini-
tiate and continue the motion, is absorbed from the environment; stress potential, tem-
perature, etc. (See Figure 3. 1-1). This movement, or slip, occurs initially along planes
in crystals where the stress and temperature potential first attains the value of the potential
"barrier. The external potential (temperature and external loading) necessary to initiate
this slip is reduced by dislocations along the shear plane which locally increases the stress
potential. The dislocation then migrates to the boundary of the crystal at which time the
deformation along the "favored" planes ceases. No more deformation can occur until the
energy potential is increased. This phenomenon is known as "strain hardening". If the
thermal and residual stress potential is quite small, a reapplication of the applied load would
indicate no significant slip would occur until the applied load exceeds the previously applied
load.

Continuing to increase the applied load causes planes in other crystals to attain the
necessary potential to slip. Simultaneously, the movement of dislocations to the crystal
boundaries increases the internal stress potential at the boundaries which. when coupled
with the external potential (thermal and stress), causes the deformed crystal to grow at the
expense of its neighbors. This phenomenon is known as "softening" or recrystallization".
The growth is in the orientation of the "favored" crystal so that the initial slip can now be
permitted to continue by moving the dislocation to the new boundary of the crystal (which
continues to expand). Thus the total slip is a function of the previous slip and implies an
exponential type of stress function (Reference 3--1). The amount of slip is extremely sen-
sitive to temperature (thermal energy). Statistical thermodynamic considerations indicate
that an exponential expression which expresses the probability that the atoms will have the
required thermal energy would define the effect of temperature on slip (Reference 3-2).

Anothe" factor should be considered. As the deformation proceeds. it induces
-esidual stresses in the surrounding crystals which then seek a state of equilibrium corres-
ponding to a lower energy state. This phenomenon is known as "relaxation" if it occurs under
load and "retarded memory" if It occurs under no load after being stressed beyond the
"elastic limit" of the material. Both are evidenced by an increase in strain which is ex-
ponential in form since its value depends on the instantaneous value of the residual stress.
This residual stress, in turn, depends upon the amount of alleviating strains. The residual
stress and strain hardening process can account for the "Bauschinger effect" wherein the
yield stress is inoreased in the direction of original loading to a greater extent than in the
reverse direction, as well as for the heat treating and'annealing phenomena.

The phenomenon of creep can be viewed as a continuation of slip under constant

load. The first stage of creep is a relaxation which proceeds exponentially with time

[c 2  )] while the second stage occurs when the strain hardening rate equals the re-

crystallization rate resulting in a constant slip rate [ C3 t ]. The third stage o1 'creep is

considered to be a manifestation of material failure and is not included in the strain rela-
tionship.
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SHEAR

(a) INITIAL (b) UNSTABLE (C) FINAL
EQUILIBRIUM EQUILIBRIUM EQUILIBRIUM

b

ENERGY
POTENTIAL POTENTIAL BARRIER

Oa- C

(d) SLIP- SHEAR DIRECTION

FIGURE 3.1-1 DEFORMATION AND ENERGY POTENTIAL UNDER SHEARING ACTION

3.2 STRESS-TEM PERA TURE-TIME-STRAIN RELATIONSHIP

This relationship, presented in Paragraph 3. 2. 1,is predicated on experimental data ob-
tained from short and long time uniaxial load tests. The mathematical formulation is in terms
of material constants which are selected so that the calculated strain curve closely approxi-
mates the experimental curve in the regions of interest. Methods of obtaining the material
cons'ants from simple uniaxial tests are indicated in Paragraph 3. 2. 2. Methods of extrap-
olating the relationship for complex loading conditions (biaxial, etc.) are shown in Paragraph
3.2.3.
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3.2.1 Unlaxial Stress-Strain Relationship

Strain can be viewed as composed of two components. One component is elastic
(assumed linear) and is associated with the volumetric change (dilation) without distortion
due to hydrostatic load. The constant ratio of stress to strain (E) is a material temperature
parameter. The other component is inelastic an.l is associated with distortion (slip) without
volumetric change due to shearing load. The slip is assumed proportional to the hyperbolic
sine of the stress ratio (as suggested by Reference 3-1) and proportional to a time-temperature
constant which varies exponentially with temperature and time. The initial slip for small
stresses is almost linear, thus the apparent (initial) modulus (EA) of the stress-strain curve

AI
is slightly less than the true modulus E. This would suggest that the (EA) modulus determined

by dynamic methods would be more consistent and higher than that determined by stress-strain
curves at high temperatures (which will contain some inelastic effects, e.g., creep, relaxation,
etc. ). The following stress-strain curve is assumed:

e= a•E + K sinh a/le (la)

where

o = strain (in/in)
E = elastic modulus (material-temperature parameter) associated with hydrostatic

stress and dilation, psi
a = applied stress, psi

= stress associated with slip. This is a material-temperature parameter which is
a function of the past history of the material, ". e., stress-temperature-time, psi

K time-temperature work hardenability material parameter directly proportional
to slip = (Kt) (KT), non-dimensional

Kt = time component of K = C1 + C2 (1 - e-t) + C t, non-dimensional (Ib)

C1 = short time (instantaneous) measure of slip (ClK sinh a/la) in which no primary
or secondary creep occurs, non-dimepsional d t " tc

C2 = measure of primary creep (C2 (1 - e- ) KT sinh a/a 0 ) due to "relaxation", etc.
non-dimensional

C3 = measure of secondary creep (C3 t KT sinh a/ao ) as the rate of "strain hardening"

is balanced by the rate of "softening by recrystallization", 1/sec
KT - temperature component of K, non-dimensional

C~-Q/T
=Ce (Suggested by Maxwell-Boltzmann Energy Distribution, Reference 3-2)

Q = material constant - activation energy per gram atom divided by the universal gas
constant, *K

C4 = material constant representing the number of particles per unit time exceeding the
thermal potential barrier .

The generalized strain relationship, which includes the effects of temperature and time
as well as stress, can be employed to obtain short time or isochronous (constant time) stress-
strain and stress modulus curves (See Figures 3. 2. 1-1 through 4). The temperature effect
is contained inodepandannyof the material parameters upon the temperature and the time
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3.2.1 (Cont'd)
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3.2.1 (Cont' d)

effect is incorporated in the I Item described below. The variation of the material para-
meters with temperature must be determined from experimental data. Initial investigation
in this direction has Indicated that the functional relationship is smooth and that interpola-
tion should give satisfactory accuracy.

Another Justification of the assumed strain relationship is the similarity in formulation
to the various diffusion rate processes found in the literature (e. g. , Reference 3-3 and 3-4).
These formulations agree satisfactorily with the experimental evidence and are employed with
available strength and creep data to obtain interpolated or extrapolated strength data. As an
example, the Larson-Miller parameter, employed as a correlation parameter (Reference 3-3
and 3-4), is equivalent to the energy of activation Q for an unstressed material, and should
be modified by a stress factor if it soaks under load,e. g., L.M. = T (In C4 + in t + 1%).

The generalized relationship, Eq. (la) can be manipulated to obtain equivalent stress-
strain, secant modulus, tangent modulus, etc., curves and to devise methods to determine
material parameters used in design from simple unlaxial short time and long time data.
The generalized relationship can be utilized in the same way that a room-temperature stress-
strain curve is employed to get allowables. The results are presented in a non-dimensional
form in terms of the material design parameters.

Let
EA = apparent elastic modulus of material (obtained from short time stress-strain

curve)
ET = tangent modulus = do/de (psi)
ES = secant modulus = q/e (psi)

= K E /o = temperature, time, material parameter (8 0 elastic material;Io p 1 viscous material).

Then
E /I-P •

EAe

= - (1-f) + Psinh a/lo (2.
a a, 0

0 0

E 0 (2b)

EA
A = (1-) + P cosh a•a (2c)

ET 0

Figures 3.2. 1-1 through 4 illustrate the non-dimensional form of the stress-strain, secant
modulus, and tangent modulus curves resulting from Eqs. (la), (2a), (2b) and (2c). This data
is utilized in Section 9 on the stability of structures-in which the effective modulus is some
combination of EA, ET and ES, and also for use in obtaining approximate solutions of non-

linear Droblems (Reference 3-5).
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3.2.2 Experimental Determination of the Material Constants

The material constants are selected so that the mathematical formulation of

the strain relationship satisfactorily approximates the experimental data.

3.2.2.1 Apparent Modulus (EA)

The apparent modulus E is obtained as the initial slope of the short time
stress-strain curve as shown in Fiure 3.2.2.1-1. It may be obtained from the natural
frequency of an axial bar or torsional rod if inelastic effects cannot be eliminated from
the short time test. The time at stress and the magnitude of the stresses should be smafi
so that the non-linear components are insignificant.

EA

/e=A4+K SINHO/cre*
/ / E

8=/ //"(

EE

FIGURE 3.2.2. 1-1 SHORT TIME STRESS-STRAIN CURVE
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3.2. 2. 2 Slip Stress (ao)

The stress (o- ) which is associated with slip can be determined from a short

time stress-strain curve if the creep effect is negligible. The technique is shown in
Figure 3.2.2. 2-1 in which the deviation a = r-u/E is plotted logarithmically versus a.

A
If the creep effect cannot be ignored, then a can be determined from constant creep

rate data shown in Figure 3. 2. 2. 2-2 in which the constant creep is plotted logarithmically
versus a. Justification of this technique follows and is based on the property that the
sinh x is approximately eX/2 for large x. From Eq. (la) of Paragraph 3. 2. 1

e= alE + Kt KT sinh ,l%

C K
6 f -aE KK sinh "1 ,-- 1KT e°/ o (1a)tT

where t-.- 0 and oa/a >1
0

ClKT
In =In 2 + 7/•a (b)

CIKT 1 (.logS = log 2 + . 3 (la 0 ) (Ic)

On a semi-log plot, (1c) is an equation of a straight line of the form

y =b+mx
ClKT

wherey=log 5, b= log 2 x=a

I'
and m=-. (1/a" 1 =tan a Ax A '(10 6

2.3 AX0A

=I a 1 2- 61 (1)
0 2.3 A(log 6) 2.3 log (612/611) (See Figure 3.2.2.2-1)

Similarly,

&= a/E + KtKT sinh Iaol + KtKT ok/a (3a)

=KtKT sinh a/r°0 (for constant stress creep test) (3b)

C 3 KT
2 ea/v-° (for t-- o , al/a >1) (3c)

In In 2 + (70 (3d)
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3. 2. 2. 2 (Cont' d)
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3.2.2.2 (Cont' d)

CSKT 1
log; log C3K 1 Ova.~)2 (

1 (4)
Uo = 2.3 gog t) (Reference Figure 3.2.2.2-2)

1 02 - (O1

0*
% =-

lg( 12/1
3. 2.2.3 Work Hardenability Factor (K = KtKT)

The value of K can be obtained from data shown in Figures 3.2.2.2-1

and -2 and Figure 3.2.2.3-1. CjKT Is obtained from the intercept of the straight

line in the deviation versus stress curve (Figure 3. 2. 2. 2-1). C2 KT Is obtained from

the Intercept of the straight line In the strain versus time curve (Figure 3.2. 2.3-1).
C3 KT is obtained from the Intercept of the straight line7 In the creep rate versus strees

curve (Figure 3.2.2.2-2).

• ~( TI," a-

C KT SINH q•/ T'o

C1 KT SINH 01Oo

OlE EO-(ZO)

FIGURE 3.2.2.3-1 CREEP CURVE

3. 2.2.4 Interpolation of Material Parameters

An increase in temperature or a soaking at temperature will decrease the
magnitudes of the material parameters. The temperature potential reduces the mag-
nitude of the stress potential necessary to induce slip. The temperature also increases
the rate of recrystallization and relaxation which reduces the strain hardening. Pre-
liminary plots of the material parameters versus either a temperature or an equivalent
soai:ing parameter (e. g., Larson-Miller Parameter) have indicated that the results
should be relatively smooth curves as exemplified in Figure 3. 2. 2. 4-1. In order to
employ the non-dimensional techniques proposed in this section, it would be expedient to
compile data (EA, ao, ClKT, C2 KT, C3 KT) on the various structural materials in the

manner shown in Figure 3.2.2.4-1.
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3.2.2.4 (Cont'd)

EA

112 KT

T OR T (C+logt

FIGURE 3.2.2.4-1 VARIATION OF MATERIAL PARAMETERS WITH TEMPERATURE

3.2.3 Complex Loading

It is possible to describe the stresses and strains in a material by functions
(tensors) which are capable of expressing the state of the stresses and strains at a point.
They can always be expressed by the direction and magnitude of their principal components
(stresses or strains). For an isotropic material, the principal directions of stress and
strain coincide. Associated with the stress or strain are three invariant magnitudes which
are independent of the direction of reference. These three invariant magnitudes. or anythree combinations of all three quantities, define the tensor. It is assumed that a relation-

ship exists between the invariants of the stress and strain tensors. The unlaxial stress-
strain curve would then be an expression of this relationship which is quite simple to cbtain
experimentally and could be.!mployedto obtain the stress-strain relationship for more com-
plex loadings.
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3.2.3.1 Invariants

The three quantities which are characteristic of the stress and strain
tensor can be expressed as follows:

Let

0l,02,03 = principal stresses

C1 ,E 2 ,E 3  = principal strains

Then

first stress invariant - hydrostatic pressure (la)

=1/3 (aI + a2 + a3)

Cr = second stress invariant - octahedral shear stress

= 1/3 -/(aI - a2) + (a -)2 + (a -)2 (ab)

ai = third stress invariant

= 1/3 (o") (1"2) (03) (lc)

a. = principal deviatoric stress = a. -or (1d)

= first strain invariant - dilation

= 1/3 (E1 + E2 + e3 ) (2a)

EII = second strain invariant - octahedral shear strain

=1/3 (E 1  + (E 2 - E + (E 3 - 1 )2 (2b)

= third strain invariant

= 1/3 (C 1) (C 2 ) (C3 ) (2c)

= principal deviatoric strain = -I (2d)

Associated with the principal directions (1, 2, 3) are 8 (octahedral)
planes which make equal angles (arc cos 1/J/-) with the principal axes. On these
planes, the normal stress and strain are 0I and c, respectively, and the tangential

(shear) stress and strain are a and c11 (See Figure 3. 2. 3. 1-1). If it is assumed that

the relationship between the normal stress and strains and the tangential stresses and
strains are independent (orthogonal) of each other and are uniquely defined for any
material, then the invariant stresses and strains for a complex loading can be related to
those obtained for a simple one, such as uniaxial tension. Thus, the physical model
corresponding to Figure 3.2.3. 1-1 suggests that those crystal planes which are oriented
so that the applied loads produce higher octahedral shear stresses will slip first (assum-
ing dislocations are uniformly distributed) and that these crystals "strain-harden" re-
quiring higher stresses to cause further slip in these and less favored crystal planes.
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FIGURE 3.2.3.1-1 PRINCIPAL DIRECTIONS AND OCTAHEDRAL PLANES
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3.2.3.2 Transformation of Stress-Strain Relationship

The hydrostatic components, stress (ai) and strain (EI) are assumed to vary

linearly with volumetric deformation but without any permanent deformation. Experi-
mental evidence indicates that the assumption is quite satisfactory for the ranges of
stress-temperature experienced. The relationship between the octahedral components
of stress Of!) and strain ( e is assumed to be non-linear, with no volumetric defor-

mation, and to constitute the inelastic portion of the stress-strain relationship (Eq. (la)
a (I +Z/ ),/2CI1K T 3aiIof Paragraph 3.2.1). The relationship assumes c (I+)E (1 +/2c°

11 +1/)EA + 12- a
Figures 3. 2. 3. 2-1 through -4 illustrate how a uniaxial stress-strain curve

can be employed to derive a complex stress-strain curve. The uniaxial stress-strain
law is obtained experimentally as shown in Figure 3.2.3.2-1. The hydrostatic stress
and strain and the octahedral stress and strain are computed in Figures 3.2. 3.2-2 and
-3. The complex loading is employed to obtain strains from stresses (as shown in
Figure 3.2.3.2-4) or stresses from strains, by assuming that the deviatoric to octahedral
stress and strain ratios are equal. This is implied by the von Mises yield criteria and
the Mises-Levy stress-strain rate relationship (see References 3-6 and 3-7), i.e.,

a.'I a.Y' - aY a1I1
- - (3)

Ei 6i -6I 11

The invariant stress-strain relationships can be employed to postulate
allowables of combined loading conditions from allowable invariants of simple (uniaxial)
loading conditions wherever applicable, and to obtain approximate solutions to complex
problems (assuming a compatible strain distribution results in an upper limit of the
applied load, whereas assuming an equilibrium stress distribution results in an upper
limit on the displacement of the structure).
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SECTION 4- THERMO-ELASTIC ANALYSIS OF BEAMS

The thermal loading on a beam reduces the stiffness (increasing deformations due
to mechanical load), and in general induces thermal stresses and deflections. If the beam
is unrestrained externally (statically determinate, then thermal stresses can only occur
due to the internal requirements that plane cross sections before bending remain plane after
bending, provided that the undeformed beam does not exhibit sharp curvature (R/d S 5).
Experimental evidence does not violate this assumption. If the beam is restrained external-
ly (statically indeterminate), additional thermal stresses will be caused by the redundant
restraining forces. A

The thermo-elastic analysis of beams, with all of the above factors contributing to
the problem, is presented. General solutions are given and methods are presented for the
numerical solution of specific problems.

The following symbols are used throughout this section:

a Non-dimensional thermal strain ratio; Distance from fixed end to initiation of
load A

a, a' Coefficients of polynomials
b Width of cross section
c Exponent defining variation of 1/(-I)
d Distance from reference axis to an extreme fiber
e Non-dimensional width parameter
f Virtual axial force caused by unit virtual loads
f. Influence coefficient for fixed end axial reaction (see text, Paragraph 4.2.2.3)

h Height
j Exponent defining variation of curvature
k Exponent defining variation of axial load; Integer indicating rectangle location
m Virtual moments caused by unit virtual loads
mc Influence coefficient for fixed end moment reaction (See text, Paragraph 4.2.2.3)

m, n Integers
p Virtual shear loads caused by unit virtual loads

Influence coefficient for fixed end transverse reactionpi c
q Variable transverse load
r Exponent defining variation of transverse loading
s Non-dimensional distance u/d
u, v Distance from reference axes which are oriented parallel to elastic principle

axes
u Distance from v reference axis to elastic centroid
w Change in rotationof cross section per unit distance (curvature) due to

mechanical loading
wl Change in rotation of cross section per unit distance (curvature) due to

thermal loading
w Total change in rotation of cross section per unit distance, wt = w + w'

x Distance along length of beam
(x) Function of x
y, z Distances from arbitrary but perpendicular reference axes
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4

-- fEydA f EzdAy, z Distances f EdA f EdA from Y, Z reference axes to elastic centroid

y•," istncs Eyci TdA fE'zaTdA
Distances fETdA from Y, Z reference axes to location of7i~d ' EciTdA
resultant force on the cross section

A Area =fdA
AA, dA Small element of area
B. Level of aT at point "J" above the reference axis value of aT, B =a T-ct T

j J j o00
E Modulus of elasticity = E(T)
Eb Elastic width = E baj

(avg)
EA Effective axial stiffness or force required for unit axial deformation, fEdA
E'l Effective bending stiffness rr moment required for unit rotation,

Eli - fE (y-y) 2 dA

F Axial force due to mechanical loading
F' Restoring axial force due to temperature, F' = f EaTdA
2L Total cantilever axial load at L due to mechanical loads

I Moment of inertia of cross section, Ij= (y-_2 dA

I0 Moment of inertia of an element of area about its centroidal axis

K Non-dimensional shape parameter
L Length of beam; Power of general term of the aT polynomial
M Bending moment due to mechanical loading

Restoring bending moment due to temperature, MN = -•'-y) f EaTdA

7n Total cantilever moment ,nt L due to applied mechanical load
L

P Transverse-load due to mechanical loading
Total transverse cantilever load at L due to applied mechanical loads

T Temperature change from a datum value
UU, VV Elastic principle axes
Y, Z Arbitrary reference axes

Q Mean coefficient of expansion
aT Strain due to free thermal expansion
p Non-dimensional taper parameter
'Y Axial strain parameter
6 Non-dimensional rotation parameter
C Strain
?I Axial strain at elastic centroid due to thermal loading

Axial strain at elastic centroid due to mechanical loading
Total axial strain at elastic centroid, t= + ?I

Non-dimensional length parameter defining distance from initiation of load on beam
71 Non-dimensional step parameter
X Non-dimensional axial stiffness, X = EA/dEobo

S"r Variable axial load (shear flow)
p Non-dimensional elastic centroid location, 1 = u/d I
v Non-dimensional length parameter - a/L; Non-dimensional bending stiffness

T' =EI/d3 Eob

a Stress
SA Deflection
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Subscripts

a Anti-symmetrical
c Combined th
k At location of k rectangle
m Due to mechanical loading
n At extreme fiber location
o At reference axis location
s Symmetri .al
t Due to temperature
u, v, uu, vv About principal axes
y,z,yy,zz About arbitrary but perpendicular reference axes

About y, z centroidal axes
0 Free end of cantilever beam
L Fixed end of cantilever beam, left side; Due to L term of cT polynomial
R Fixed end of cantilever beam, right side

4.1 THERMO-ELASTIC ANALYSIS OF STATICALLY DETERMINATE (UNRESTRAINED)
BEAMS

This Sub-section 4.1 presents methods for determining the deformation and
stresses of an unrestrained beam subjected to temperature variations through the beam
cross section. The section properties for the general case of variable modulus (due to
temperature and construction) are given in integral form for the purpose of determining
the response of the cross section to both temperature and load. The general solution is
then presented in integral form and is evaluated by the methods of finite sum and power
series.

The finite sum solution is the most general of those discussed and requires a
minimum amount of engineering ingenuity to set up and evaluate tables. It should be used
in cases where the directions of the principal axes are not obvious. The power series
method, though not as accurate as the finite sum solution, gives a more rapid means of
obtaining analytical solutions through the use of approximating analytical functions. The
use of approximating functions is further justified by the fact that the functions are to be
integrated, thus improving the accuracy of the approximation.

If the beam is unrestrained externally (statically determinate), then the solution
presented in this sub-section defines the deformations (axial strain and ch ,nge of curvature)
and the cross sectional stresses. If, however, the beam is restrained ext .rnally (statical-
ly indeterminate), additional thermal stresseswill arise due to compatibility forces (re-
dundants'., -t the boundary. The deformations of the cross section, obtained in this Sub-
section, allow the determination of beam deflections and are thus essential to the thermal
solution of indeterminate beams as outlined in Sub-section 4.2.

WADD TR 60-517 4.6

U- ----- ',-,>'< - 4



4.1.1 General Solution

The following paragraphs present the general thermo-elastic solution for an un-
restrained beam in integral form, as derived in Reference 4-1. Evaluation of these integrals,
which causes most of the difficulty in obtaining numerical solutions to specific problems, is
discussed in Paragraph 4. 1. 2.

The following assumptions and limitations apply to the thermo-elastic solution of the
unrestrained beam:

(a) Plane cross sections before bending remain plane after bending. This is thebasic
assumption in all bending problems. Experimental data indicate that this requirement for the
deformations of the cross section is sufficiently accurate for engineering analysis.

(b) Material is linear elastic at any temperature. Thus a single relationship of
stress to strain (a = E E ) can be utilized to connect the equations of deformation and equili-
brium and the principle of superposition can be employed. Any plasticity, buckling, or creep
would modify the results, usually by reducing the peak stress but increasing the deflections.

(c) The variation of the cross section and temperature along the length of the beam
is both continuous and smooth, and does not produce any significant shear forces. Significant
shear forces occur in the vicinity of these abrupt changes (heat sinks, free and clamped ends,
and abrupt changes in cross section) and the solution must be modified to account for these ef-
fects. These effects should be insignificant at distances greater than the order of the dimen-
sions of the cross section (St. Venant Principle). For example, Reference 4-2 shows that at
distances of approximately three beam dopths away from free ends, solutions obtained under
the assumptions of plane cross sections remaining plane are valid.

The unrestrained beam subjected to temperature (see Figure 4. 1.1-1) is analyzed
by subjecting the beam to a set of force systems which satisfy equilibrium and produce defor-
mations which are compatible with the requirement of plane cross sections remaining plane
after bending.

Consider a unit length of beam. Initially, each fiber of the beam is liberated from
the influence of its neighbors. The temperature distribution is then applied to the beam which
causes each fiber to expand by an amount aT. In general, the thermal expansion of the fibers
will cause the cross sectional plane formed by the ends of the fibers to warp. To satisfy the
requirement of plane cross sections remaining plane, a pressure loading of -EcaT is applied
to eliminate the thermal expansion and return the cross section to its original position and con-
dition (plane). This pressure loading upsets the equilibrium of the cross section. An axial
load (F' =f EaTda, equal in magnitude but opposite in direction to the force on the cross sec-
tion due to the pressure) is applied at the elastic centroid of the cross section. This balancing
axial force causes pure translation without rotation of the cross section plane so that the re-
quirement of plane cross sections remaining plane is not violated. Rotational equilibrium still
remains to be satisfied since the location of the resultant restoring force -Y, in general, will
not coincide with the centroid of elastic area y. Equil!ibritun is achieved by applying a bal-
ancing moment to the cross section of sufficient magnitude (M' = [ y7]F' ) to cause pure ro-
tation of the cross sectional plane.
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4.1.1 (Cont' d)

The superposed force systems now satisfy equilibrium and produce deforma-
tions which are compatible with the requirement of plane cross sections remaining plane.
Thus, the procedure outlined above must result in a stress-deformation distribution for
an unrestrained beam which is consistent and unique under the a3sumptions.

d z

dyy•

Location of Resultant d
~~~Restoring Force !••

x

FIGURE 4.1.1-1 ELASTIC AREA CROSS SECTIONs
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4. 1. 1. 1 Elastic Section Properties of Cross Section

The structural response to both mechanical loads and thermal stimulae is governed
by both the effective bending (EI) and axial (EA) stiffness of the cross section. The equations
for these properties, which are stated below, are Identical to those for cross sections having
constant E except that E is retained within the Integral sign since it is permitted to vary
over the cross section.

E"A = fEdA (Z)

y =f E y dA/f EdA (2a)

z = fEz dA /fEdA (2b)

ETI-- = fE z2 dA - 2 fEdA (3a)
yy

El-- fEy 2 dA - 2 fEdA (3b)
zz

Ef-- E yzdA -y ZfEdA (3c)yz

.E- I-- + El-- EI-- - 2---
(Eyyuu' ElIv) YY 2 zz yy 2 zz) + (E'-Iy) 2  (4)

The distances ý and 1 (Figure 4. 1. 1-1) to the elastic centroid are given bEqs. (2).
Thus, the elastic centroid, Eq. (1), is the centroid of the effective elastic area EA, not of
the geometric area. Similarly, the geometric moments of inertia are of no significance when
E varies over the cross section. The effective bending stiffnesses, Eq. (3), must be employed.

Equation (4), expresses the bending stiffnesses about the elastic centroid principal
axes in terms of the bending stiffnesses about arbitrary centroidal axes. The elastic princi-
pal axes are defined as those orthogonal axes for which

El = fEuvdA = 0.uv

4. 1. 1.2 Stresses and Deformations of the Cross Section Due to Temperature

No thermal stresses are caused in an unrestrained isotropic, homogeneous, linearly
Clearly, in the particular case of an unrestrained beam, a linear aT distribution over the cross

section produces free thermal expansions which cause plane cross sections to remain plane
after deformation. No stresses are required to maintain the plane cross section

In general, a non-linear temperature distribution over the cross section would cause
free thermal expansions of the beam fibers which would warp a plane cross section out of plane.
Thermal stresses are produced which restore the plane cross section. In this respect, a tem-
perature distribution can be considered as a "thermal load" which, when applied in the absence
of mechanical load, still produces stresses and deformations.

Given below are the equations, derived in Reference 4-1, for the stresses and defor-
mations in an unrestrained beam due to thermal load.
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4. 1. 1.2 (Cont d)

E A

( -Ti-M,'XT ' M-

W1 y-,'z..y y3J (2)

El-y

:• ~where .

SF ' = 'E •T d A (4) •
- 2 = •EaTy dA/f•E•T dA (5a)z = fEaTz dA/ETdA (Sb)Mz (y-)F' (6a)

W = (Y - 'F) F' (6b)

yy

4. 1.1.3 Stresses and Deformations of the Cross Section Due to Combined Mechanical and :Thermal Loading

For a linearly elastic beam, mechanical loads can be combined with thermal loadssimpl y f superposition. Thus

(E'+ýF) (1a)

(Wzt L1j(M'v + M--)]+j E (IV'•, +M- M(2a)

(M z :

M+-t (zi z-) F (6b)

4. Stand, e sse s ausefompressive Cross asStnecParatioraphe 4.1.1.2tant and

t Moments about the yy and zz centroidal axes are positive when their sense is such
y by and z - z have positive values). F is positive when tensile, and T is positive when

i ~above a datum value. "
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4. 1.2 Evaluation of Integrals

The solution of the thermo-elastic beam problem requires the evaluation of the integrals
given in Paragraph 4. 1. 1. Two methods of sufficient engineering accuracy are presented. In the
first, integrals are approximated by finite sums; in the second, the goemetry and temperature dis-
tributions are approximated by simple integrable functions (polynomials or power series). Approxi-
mate methods are justifiable since the functions must be integrated thereby improving the accuracy
of approximation.

4. 1. 2. 1 Solution By Finite Sum

The cross section is broken up into a finite number of elemental areas, selected so that
the variation of otT and E in each element Is small. The procedure is adaptable to all cross sec-
tions and the degree of accuracy increases with the decrease in the size of the elements. Digital
computing machines can be employed (see Reference 4-3) to solve the problem.

The general solution is outlined in tabular form in Table 4. 1.2.1-1 and illustrated by
the example which follows, with numerical results given in Table 4. 1. 2. 1-2. The number of tabular
columns and labor involved in solving the problem are considerably less when the following sim-
plifying conditions are realized:

(a) y and z axes coincide with principal centroidal axes u and v (example: axis of
symmetry)

(b) ctT is symmetrical about a principal axis of symmetry of the elastic geometry
(M t -- or M'--= 0)

yy zz

Additional tabular columns are eliminated if E and ay are constant over the cross
section. Table 4. 1. 2. 1-3 outlines the solution for the case in which all of the above simplifications
pertain.

The finite sum solution for the deformations of the cross section is based on an approxi-
mating geometry consisting of a finite number of points of concentrated elastic area located at the
centroids of elements. Once the deformations ( Z, w , Wz) have been calculated from the tabular

solution, stresses can be obtained at any points on the cross section as, for example, extreme
fiber points (see illustrative problem).

?4
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4.1.2.1 (Cont d)

The solution of an unrestrained beam by the finite sum method is illustrated
below for an unsymmetrical section with an unsymmetrical temperature distribution,
T = T (y, z), on the cross section of the Halcomb 218 "'zee" spar shown in Figure
4.1.2.1-2. Determination of the following is required:

(1) Thermal stresses and deformations

(2) Stresses and deformations when subjected to a moment about the vertical
axis of 10,000 inch-pounds and an axial force of 10,000 pounds, i.e.:

M-- = 10,000 inch-pounds

M =_ 0

"F 10,000 pounds

The solution is worked out in Table 4.1.2.1-2 by the finite sum method. Stresses
are plotted in Figure 4.1.2.1-3.

X

'.4

3

A
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4.1.2.1 (Cont'd)

MECHANICAL LOADS

M-- = 10,000 inch pounds
Yy

M-- = 0
2.0 

z

" F = 10,000 pounds,• d' 1.0' ]•c

.30 d 0 @ c THERMAL LOADS
d"l 6 6 50

Element Mean Temp. E/10 o(106)
.20

7 1 1000°F 20.0 6.60

2 950 21.1 6.53

3 850 23.3 6.35
.80 4 770 24.7 6.23

4.0 5 700 25.8 6.03

6 650 26.5 5.88
.80 :5 7 700 25.8 6.03

8 800 24.2 6.25
9 900 22.2 6.44

.80 4

y

.80 3)

FIGURE 4.1.2.1-2 FINITE SUM METHOD
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4.1.2.2 Geometry of Concentrated Elastic Areas - Sandwich Beam

The finite sum method (described in paragraph 4. 1. 2. 1) reduces the continuous )
cross section into a number of discrete elements, such that each element is considered to
be a concentrated point of elastic area (EA), and free thermal strain (aT). This approxi-
mation is especially applicable to beam cross sections made up of localized, high area
flanges (or caps) and thin shear webs. In beams of this type, the deformations of the cross
section and thermal stresses in the caps can usually be determined with sufficient accuracy
(especially if peak temperatures occur in the caps) by neglecting the web material, thus
considerably reducing the amount of calculation.

As an example, consider the sandwich beam cross section showr in Fig. 4.1.2.2-1.
It is assumed that E, a, and T are constant in each face, the face thickness is small com-
pared to the depth of the cross section, and the core carries only shear. Thus the cross
section is symmetrical about the y axis and the faces can be considered as concentrations
of elastic area (EA) and free thermal strain (aT).

Y E1IA 1, fT1I

V>CORE FACES

hZ

E A aT2 2' 2 2

FIGURE 4. 1.2.2-1 SANDWICH BEAM CROSS SECTION

The formulas at the bottom of Table 4.1.2.1-3 are directly applicable. They yield

lEA +1 A h (1)

_ E AIofT 1 + E2 A2 2T2
EA +EA(2)

w = 1 T1 - a 2 T2'z (3)

h

o1  = 02  = (4)
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4. 1. 2.2 (Cont' d)

Note that no thermal stresses occur in the faces, Eq. (4). In fact, no thermal
stresses can occur in an unrestrained beam when the cross section consists of less than four
concentrated areas because, for two or three such areas, a plane can always be passed
through the thermally deformed section.

4.1.2 3 Power Series Solution - Bending About One Principal Axis

The power series method gives a non-dimensional solution to the unrestrained
thermo-elastic beam problem in terms of non- dimensional parameters which define the thermal
loads and section properties.

This paragraph discusses the application of the power series method to problems
in which the directions of the principal axes are known and bending occurs about only one of
these axes (as, for example, when one of the principal axes is an axis of symmetry for both
the elastic area of the cross section and the aT distribution). Under such conditions, the
power series method usually has a distinct advantage over the finite sum method.

The method can be extended easily to the general case of bending about both prin-
cipal axes (Paragraph 4.1 2.4). However, because of the additional numerical computation
required, expecially when the directions of the principal axes must first be determined, the
method of finite sum should be used in problems involving bending about both axes so as to
obtain solutions with the least amount of labor.

Paragraph 4 1. 1 1 shows that, in general, the modulus of elastic)ty, E, varies
over the cross section and thus appears under the integral sign in the formula.R for the section
properties. Accordingly, the structural behavior is goverred by the elastic properties of the
cross section (EA, EI), rather than by the geometric properties of the cross section (A, I).

The power series method will be applied to beams having the following types of
elastic cross section configurations:

(a) Cross sections where the elastic width (Eb) is monotonically continuous
through the depth or on each side of a bending axis of symmetry. (Figure 4. 1. 2.33-1 (a) and
-1(b)).

(b) Cross sections with discontinuous elastic width variation of the multi-rect-
angular type as exemplified by tees, channels, I-beams, etc. (Figure 4.1.3-1(c)). Cross
sections that do not have the above configurations can usually be approximated by them with
a reasonable degree of accuracy.

The following steps are taken in arriving at the solution:

(a) The average aT profile (Figure 4.1.2.3-2 and Paragraph 4.1.2.4) in a direc-
tion normal to the principal bending axis is approximated by a power series (polynomial) of the
form

L n n-IaiT= a Ls ans +a s- +. . .

as ann + nI + . . o (I)

L=o

(b) Continuous cross sectional configurations of the types discussed above are
represented by binomials of the form

Eb = E0b° (1 + 3s) (2)

where and K are non-dimensional parameters defining the elastic width variation.
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4.1.2.3 (Cont' d)

Eb _nbn_-

71 d

0E0 Bending Axis
d Id

Ref. dof Symmetry

y 5 4A~i L.-4Ref.
00Axis E-- Eb -]

(i) Monotonically Continuous (b) Elastic Widths Monotonically (c) Multi-rectangular Dis-
Elastic Width Variation Continuous and Symmetrical continuous Elastic Width

About the Bending Axis Variation

FIGURE 4.1.2.3-1 TYPICAL CONFIGURATIONS OF ELASTIC CROSS SECTION AREAS

Discontinuous multf-rectangular configurations are expressed by means of step
parameters 77 m defined in Eq. (1) of Paragraph 4.1.2.3.4.

(c) The parameters which define the aT distribution and elastic cross section in
the above manner are substituted into non-dimensional expressions for the stresses and
deformations.

u b+ u

f E aT(uiv) dv

u.1) aT

//d 'and T arFntin

f b E(ui 'v) dvaF b--b

UU - bt :[ a

(a) Cross Section With Two Dimensional (b) One Dimensional Average a T Profile
Distribution of E, a , T in u Principal Direction.

FIGURE 4.1.2.3-2 DETERMINATION OF AVERAGE aT PROFILE FOR BENDING
ABOUT UU PRINCIPAL AXIS

4A

'WD R605742



4.1.2.3.1 Polynomial Approximation of a Given aT Distribution

Consider the temperature (ctT) profile shown in Figure 4.1.2.3.1-1, which
represents the average variation in the direction of one of the principal axes.

S,U a T

u T R r

FIGURE 4.1.2.3.1-1 aT PROFILE

It is desired to determine a polynomial expression of the form

j /n

•T= ns +a~ln- . .. .+ s+ o n L agL (1)

0 L=o

where s =u/d, which will match the profile values of aT at discrete points equally spaced
through the depth. The solution consists of solving n linear algebraic equations for the n
unknown coefficients an, an. . . . a1 where n is numerically equal to the number of

equal subdivisions of the profile. In matrix form, the coefficients are determined from the
equation:

2 1 n -1F1  2 1/1*-a• Ni) N-O•(÷ ... .+ . -
2 2 2 nI

Ia2 nj- '2 .. B2
aj (n•) n•) . . .. Nn-) .. ... n) B i (2

an j (1) (1) . . . . ... (1) Bn .

where Bj (ojTj - %TO). (3)
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4.1.2.3.1 (Cont'd)

Obviously, as more and more subdivisions are taken, higher order polynomials are
obtained which more accurately match the correct temperature profile. However, the addi-
tional work and time expended in obtaining high order, extremely accurate, polynomial repre-
sentations is seldom justified. Since the temperature distribution is to be integrated in the
process of obtaining the solution, the accuracy of the approximation using a low order poly-
nomial is improved. Also,an exact representation of the temperature profile may become
meaningless if the available data from which the profile is constructed is scant and inaccurate
(as is often the case). In most cases, solutions of engineerin3 accuracy can be obtained
with polynomials no higher than the 4th order (which matches aT at the extreme fiber, at the
reference axis and 3 intermediate equally spaced points). The matrix solutions for the co-
efficients, presented in Eq. (2) in general form, are given in Table 4.1.2.3.1-1 for polynomials
up to the 4th order.

The order of polynomial to be used in any given problem should be determined on
the basis of factors such as the completeness of available data, the shape of the temperature
profile, and the desired degree of accuracy. Tbre coefficients of polynomials higher than the
4th order can be determined from Eq. (2).

The method of polynominal approximation of the aiT profile is illustrated below
for the case where the values of aT are given at five equally spaced points, as shown in
Figure 4.1.2.3. 1-2. The following will be determined:

(1) The polynomial which fits the 3 points®, ® and®

(2) The polynomial which fits all 5 points
s

3.50
S:7--® , : 2.25 _

1.50 -3/4
1. 00 L=/T s=1/ 2

S 1. ooL Ref. 3 x-- Axis -to aTx 103N

FIGURE 4.1.2.3.1-2 aT VALUES AT 5 EQUALLY SPACED POINTS

For a 3 point fit, Table 4.1.2.3.1-1 gives
2

2L 2
CLT = L = as2 + a0S + 0oTo

where
e oTo 1. 0x10 -3

and

a2 -4 2 3.5 - 1.0 -4 2] 2.5{:}I
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4.1.2.3.1 (Cont'd)

The matrix multiplication indicated above yields the desired column matrix

(la}= HIs B}
In general the value of each element, a. offal is obtained by selecting the i th row of

[s] and summing the products of its elements with the corresponding elements of the
column B}.

Thus:

ax103 - (4) (0.5) + (-1) (2.5) = -0.5

a 2 x103 = (-4) (0.5) + (2) (2. 5) = 3.0

and therefore

aTxl03= 3.08-0.5s+1.0

For a 5point fit, Table 4.1.2.3.1-1 gives

T = as4 +a 83 + a s2 + als + T

where aoTo = 1.0x10 3

and

a( 16 )(-12) ( 5:y)(-1) .0
1 1

a2 (-6V~ (76 ) (-37j) (7j. .50
x 10 3=

a 96 ) (-128) ( 74) (-16) 1.25
2 22 2S(-4 (64) (-42j) (14 250La4 -

or

3 1ax10 = (16 )(0) + (-12) (.50) + ( 5.j )(1.25) + (-1) (2.50) = -1. 833
3a 1 11

a2 x103 = (-69) (0) + ( 76 ) (.50) + (-37-- (1. 25) + 7-j) (2.50) = +9.667

3 2a3 x10 = ( 96 )(0) + (-128) (.50) + ( 74V (1.25) + (-16) (2.50) = -10.66?

322a4 x (-4 (0) + (64)(.50) + (-42) (1.25) + (10) (2.50) = +5.333

Thus12
3 4 3 2aT x 10 = +5.333s - 10.667s + 9.667s - 1.833s + 1.000

Plots of the aT profiles resulting from the above polynomial representations
are shown in Figure 4.1.2.3.1-3.
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4.1.2.3.1 (Cont'd)

1.0

.8

.. 6

.6c~x1 3 =5333T x 103 5. 33382 -10. 667s
+9.667s -1.833s+1.000

.4 3 2aTx10 = 3.Os -0.5s+ 1.0

.2

0 Fitted Points

aT x 103
0 1 2 3 4 5

FIGURE 4.1.2.3.1-3 POLYNOMIAL aT PROFILES OF ILLUSTRATIVE PROBLEM
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4.1.2.3.2 Binomial Representation of Continuous Elastic Cross Sections

Approximate representations of continuous cross sectional geometries having
monotonic elastic width variation (Figure 4. 1. 2.3.2-1) are given by the following basic
expression:

r K 3 6 2!1" (la)

El) =Eobo I + K 2! 0u
where s d

and Enbn

Eob I (Taper Parameter) (ib)
00

The value of K (shape parameter) is determined from the equation[Eub - Eb
K .2 o' Eh. - Ebo (2)

U,S
E b

nn7
u d
s I

E b
.5.5 -

u = .50d
s = .50

Reference Axis

FIGURE 4.1.2.3.2-1 CON.TINUOUS CROSS SECTION WITH MONOTONIC ELASTIC WIDTH
VARIATION

The taper parameter, 1 , defines the ratio of the elastic width at the extreme
fiber to the elastic width at the reference axis; the shape parameter, K , defines the shape
of the sides (elastic width variation). Figure 4.1.2.3.2-2 presents a summary of the geo-
metric shapes represented through the complete range of the parameters 13 and K.

* < - 1 gives negative width and is thus meaningless. K < 0 occurs for non-monotonic
width variation and results in infinite width at the reference axis.
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4.1.2.3.2 (Cont'd)

ft 13=-I -1< 1<0 J9=0 13>0

0< K< 1 _

Kl

(straight
Sides)

K > 1

FIGURE 4.1.2.3.2-2 MONOTONIC GEOMETRIC SHAPES DEFINED
BYPARAMETERS 13AND K

In many cases, the temperature range is such that the variation of modulus
of elasticity is insignificant. The actual cross sectional geometry then has the same
shape as the elastic geometry, and geometric shapes such as circles, ellipses, etc.,
can be closely approximated by Eq.(la). Note that the actual shape of the elastic
cross section need not be symmetrical (see Paragraph 4.1.2.4). Figure 4.1.2.3.2-2
is presented in this manner only to emphasize the shape of the sides.

WADD TR 60-517 4.29



4.1.2.3.3 Solution for Continuous Elastic Cross Sections

For continuous cross sections having monotonic elastic width variation
(Figure 4.1.2.3.2-1), Lhe elastic section properties for bending about a principal axis
are obtained by substituting Eq. (la) of Paragraph 4.1.2.3.2 into the general integral
equations for elastic section properties which are presented in Paragraph 4. 1. 1.1. The
results, derived in Reference 4-1, are given below in non-dimensional form.

AEA

d dE 0b0  K + I

u .. (+fi (2)
d Eob K + 1 2

E___ =(1 __Pf--____(3
T + AP 2 (3)

d3 Eb K +3

where 13 and K are determined from Eqs. (1b) and (2) of Paragraph 4.1.2.3.2. These
"elastic" section properties should be employed in the solution of the deformation and stresses
of beams subjected to mechanical and thermal loads.

The total thermal deformation of the cross section can be considered as the
superposition of the deformations due to the thermal loads represented by each term of
the caT polynomial (Eq. (1), Paragraph 4.1.2.3.1). The contribution of the Lth term of
the aT polynomial to the total deformation is obtained by substituting aT = a LsL, and
the expressions for the section properties given above, into the general integral equations
for the deformations (Paragraph 4.1.1.2).

Thus, in non-dimensional form, the deformations due to an aT profile of the

form aT aLsL are

L/ a+l) (4)6L L L'+I/a L -+-( + K +KL + 1

5L dw I /aL + + K L 2++I (5)
L L +k + ---

Equations (4) and (5), taken from Reference 4.1, are shown graphically in Figures 4. 1. 2.3.3-1

and -2 for the case K=1 (elastic cross section with straight sides). Referring to these graphs,
note that for the case L=0, corresponding to aT constant through the depth, the non-dimensional
elongation y 0 and rotation 60 have the numerical values one and zero, respectively, for all
values of taper parameter fl. The case L=I corresponds to an aT distribution which varies
linearly through the depth and thus 6 =1 for all Pt. Note also that the deformations are relatively
insensitive to changes in the taper ratio for large values of 13.

The total thermal deformations for an aT profile represented by a polynomial of
order "n" are, by superposition:Sn n

L D 01aL YL (6)
L=o L__o
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4. 1.2.3.3 (Cont d)

n n

wt WL= aLJL" (7)

SL=o L=o

The stresses due to thermal loading are determined from the total thermal
deformations by the relationship

" = E -•T + cI + w' (-u-)] (8a)

or alternatively by
n

a= E X aJ [ -SL + Y/L+6 L(s (8b

The stresses due to mechanical loading are, from Eqs. (1) and (3) for the section
properties,

A E F M~(-)

-dEbo (u-u )] ' 8)

where in the above equations, s, u, E and aT are prescribed for the point at which the stress
is to be determined.
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4.1.2.3.3 (Cont'd)

L
1.0aT aLs

L=0

.8 .6 L--o

L=2

.- - -.4

L=4

.2.

0

-1.0 -. 5 0 .5• 1.0 1.5 2.0
Enb

Eb

n n

5 ~ ~ ~ ~E b> IL~
0 0 Typical Cross Sections

FIGURE 4.1.2.3.3-1 ELONGATION, -y' FOR CONTINUOUS GEOMETRY OF THE FORM
Eb = E b (I +s sK), WITH K I (STRAIGHT SIDES).

0 0
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4.1.2.3.3 (Cont'd)

L
atT= a s

L
1.2

L=2

1.0 
L I

L //
000

_.0 11115

0 I," I,0=O
-1.0 -. 5 0 .5 1.0 1.5 2.0

Eb00 Eb

APCross --o

SSections a. Eb° 3.310 00

FIGURE 4.1.2.3.3-2 CURVATURE, 6 L' FOR CONTINUOUS GEOMETRY OF THE :
FORM Eb =Eb° (1I+(3 K), WITH K = I1(STRAIGHT SIDES).iI
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4.1 .2.3.3 (Cont'd)

The solution of the stress and deformation for an unrestrained beam, with the
cross section * shown in Figure 4. 1. 2.3.3-3, is illustrated below.

It is desired to calculate and compare the deformations and stresses produced by
each of the following polynomial approximations to the aT profile:

(a) aTx103 =3.0s 2 -0.5s +1.

3 4 3 2
(b) aT x i•0 = 5.333s -10.667s +9.667s - 1. 833s -1. 000 (Refer to

Figure 4.1.2.3-5)

E b =3x106

n nl

E b 8x 10s 1.0
5 5 d = 3.0"

s= .5
u = 1.5"

Ref.
Axis I

E b = loxl06

FIGURE 4.1.2.3.3-3 ELASTIC CROSS SECTION

• The elastic cross section shown in Figure 4.1.2.3.3-3 makes physical sense in that a
cross section which has a physical geometry of constant width b has an elastic width Eb
which decreases with increasing temperature.
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4.1.2.3.3 (Cont'd)

Solution:

(1) The parameters P and K are determined from Eqs. (lb) and (2) of
Paragraph 4.1.2.3.2. Thus

Enbn3Ebo - 1 -. 7000

E~b 10 -

E 5nb. - Eobo

3.32 Log (3.5) = 1.8063

(2) Substituting the above values of • and K in Eqs. (1), (2) and (3) gives the
non-dimensional section properties:

A.=l ~.= -.7000
=1+ =1 + 2.80 = .7506K+1 2.8063

1+1 . - - + -. 7 0 0 . 4 2 1 1
A= (2 K+2 .7506 2 3.8063

1 + _ ;L = u2 + -. 7000 .7506 (.4211)2 .054b
3 K+3 3 4.8063

(3) The solutions of Eqs. (4) through (7) for the deformations caused by each of

the polynomial ciT distributions, are given below in Tables 4.1.2.3.3-1 (a) and -1 (b).

(4) The stresses are obtained by substituting the deformations into Eq. (8).

Thus:

For 2nd order cT polynomial

or = E [-aT + V' + w' (u-u)]

= E -aT x 10 3 + 1.5398 +..7563 (u-u)] x 10-3

For 4th order aT polynomial

c= E T x 10 3 + 1.4974 + .7580 (u-U)] x 10-3

where u = pcd = (.4211) (3.0) = 1.2633

The above stresses are plotted in Figure 4.1.2.3-.3-4.
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4.1.2.3.3 (Cont'd)

If it is desired to determine the points of maximum tensile and compressive
strains without resorting to a plot through the depth, use of the alternate expression for
the stress, Eq. 8(b) is advantageous. Thus, by substituting into Eq. 8(b), the 2nd order
polynomial approximation

2
2 L 2 -3

aT = . a~s = (3.000s -0.500s 4 1.000) x 10
L=o

p = .4211

and the values of 6 and -y obtained from Table 4.1.2.3.3-1(a), the following analytic
expression is obtained:

a X10 3 = _3.000s2 +2.769s- .4157E

To obtain the extremum points of strain, set the derivative of q/E equal to zero,

i.e.,

d- E~-~ = (-6.000s + 2. 769) x0-3 = 0

which gives an extremum point at

2.769S 6.000 - .4615 2d
This corresponds to a point of maximum strain since the second derivative is

ds2

negative. Since only one extreme point exists, the minimum (maximum compressive) strain
for the cross section must occur at one of the extreme fibers, as verified by Figure 4.1.2.3.3-4.

Evidently, if E is constant over the cross section, then the points of maximum and
minimum strain correspond to points of maximum and minimum stress.

A comparision of the deformations obtained from the two polynomial approximations
of the aT distri:bution (Tables 4.1.2.3.3-1(a) and -2(b) shows good agreement. This was to be
expected since the aT distributions are integrated in the process of obtaining the deformations,
thus improving the accuracy of lower order polynomial approximations. The stresses, on the
other hand (Figure 4.1.2.3.3-4), do not show as good an agreement. This is due mainly to the
fact that the unrestrained beam thermal stresses are obtained from Eq. (8) as small differences
between large numbers, and are therefore sensitive to small changes in the deformations. Thus
a very accurate determination of the thermal stresses requires an even more accurate calcula-
tion of the deformations, which in turn requires the use of higher order, more accurate, poly-
nomial approximations of the aT profile, or the use of the finite sum method. It becomes
apparent that the temperature distribution must be known to a high degree of accuracy (which is
usually unobtainable in actual structures) to obtain accurate thermal stresses. The high degree
of accuracy of temperature distributions is not required for the determination of thermal de-
formations.

WADD TR 60-517 4.36

-- 7: 2



S÷ -

--,

a °. .

÷ • ° . . I

S• ÷i~

- ai



________________ � � � �

A

- 0
N 0

0 C N
0 � 0 Q0�No a � - eec..

ICC, 01.00 .. * e CIa.

* eec- c-a

a CI
*0 ��-' -C CC

- -, ICa 0

N -

I- *��C N

0 a

-F
* C

a

I' 'C -

4
a� �a 'I
* 0

o -

CC 0 0 N

0 j 0 0.C�0 e

N � C- S * - -

- a '-, 
1-

'CS

-k
mZ

< �- I

I

- 1( C
N a

N

o 0

� t**O 01-1.400 0 1-

* S N o.- � a
a '� ICC-C -

IN

-I, 0
4 U

z
o - - 0

o *

1.1 � 0a �- .� U
.4 + 0a 001-c-na 5 0� a NO - 00000 a

t.CC.0 00000 o0.0 .� .,.< U
0 N-eec

2 0 I

'a U

Ia NI-C 0
-I, i-o

* 0 'C-CA 0� 77 ___ _____ � - - ______

____ _________ __________ p

c
4



4.1.2.3.3 (Cont d)

3.0

3 2
2.d 17x 10 = 3.Os -0.5s+ 1.0

aTx 10 3 =5.333s4 -10.667s3 +9.667s2

-1. 833s 4 1.000

u

1.11

0 Ref. Axis

-. 60 -. 40 -. 20 0 +. 20 +.40 +.60

x 10

FIGURE 4.1.2.3.3-4 THERMAL STRESSES FOR POLYNOMIAL UT DISTRIBUTIONS
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4. 1.2.3.3 (Cont d)

The relationships for the section properties and deformations given in Eqs. (1)
through (5) can be simplified if the elastic geometry is symmetric about the bending axis,
Figure 4.1.2.3.3-5(a). For this case, the non-dimensional section properties reduce to

= EA 2_ (9)s dE b K + I
0 0

-S0 (10)d

and
ZI 2 EI1 +

8 d3  K+3
0 0

where d is the distance from the reference axis to an extreme fiber and 1 and K are deter-
mined from Eqs. (ib) and (2) of Paragraph 4.1.2.3.2 using the elastic width variation on
either side of the reference axis (bending axis of symmetry).

The solution for the deformations is obtained by first decomposing the total
a T distribution, Figure 4.1.2.3.3-5(b), into components which are symmetrical and anti-
symmetrical about the bending axis (Figure 4.1.2.3.3-5(c) and -5 (d)).

Thus if, as shown in Figure 4.1.2.3.3-5(b), the aT profile above the bending

axis is represented by the polynomial

n
,v = •.+....................... +ansn (122)

L=o

and the caT profile below the bending axis by

n
oT a (-s) = a' + a' (-s) + . a' (-S)n (12b)

L o 1 n
L=o

then the symmetri( al component of the total aT profile is

nn
S a L a + a - aa

____ rolO
aa + ~ ~ at

n 0

S(13a)

+, 2 (±on

and the anti-symmetric component is

WAD- at L 0 -5 o7 4
a 2

( -~ a' nis
•. +(n nlsn (13b)

2?

i ~ the reference axis and the lower (negative) signs for points below the reference axis. •
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4.1.2.3.3 (Cont'd)

For the symmetrical component of the aT profile, Eqs. (4) and (5) reduce to

'L~ a +ats _5 L L+I + + 1T) (14)
( aLaL s

2

dwt L, s 0
dwLs = 0 (15)

(L~s - aL +a' L

and for the anti-symmetrical component of the aT profile

L, a 0 (14a)
(L)a= aL + a' L

2

(6 dw L, a 2 1 + (15a)
L)a (a. a L' ) L +2 K +L +2

L zs

The total deformations are obtained by superposition of the symmetrical and anti-

symme•-•ical components as

n n

Lo

n nI F-
= 1 aL - a? LW1 W1 ,' a - 2, '2 )d( ) (17)

L=o L=o -_

Note that the elongation, ? I is caused solely by the symmetrical component of the aT
profile, while the rotation, w' is caused solely by the anti-symmetric component ot the
profile.

4
Once the deformations have been determined as above, the stresses can be obtained

from the relationship

a = E (-aeT + ' + w ' u) (18)

where u and aT are prescribed for the point at which the stress is to determined.

The method of solution is illustrated for an unrestrained beam having the geometry
and aT profile shown in Figure 4. 1. 2.3.3-6. Stresses and deformations are determined
as follows:
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4.1.2.3.3 (Cont'd)

51 2

= 50S +5150ll0 10-3

___Ref.

0 Axis 2 L_

sI L

S• •~L=o as

-s, -u [5.T00 1.50(-s) +.50] 1O-

u-2

S(Straight Sides) (bP aT Profile

FIGURE 4.1.2.3.3-6 SYMMETRIC ELASTIC CROSS SECTION WITH

UNSYMMETRIC aT PROFILE

(1) From Eqs. (lb) and (2) of Paragraph 4.1.2.3.2 or Figure 4.1.2.3.2-2,

K= +1

(2) Substituting the above values of P and K in Eqs. (9) and (11) gives the non-
dimensional section properties

As •=2 (1+ P+1 2 () =2 - =1

3 K+3 3 4 6

(3) The solutions of Eqs. (14), (15a), (16) and (17) for the deformations are worked
out in Table 4.1.2.3.3-2.

(4) The stresses are obtained by substituting the deformations in Eq. (18), thus

a = E (-aT + Z' + w' u)

= E (-aT x 103 + .9583 + .0750 u) x10

These stresses are plotted in Figure 4.1.2.3.3-7.
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4.1.2.3.3 (Cont'd)

2.0

1.5

1.0

.5

Ref. 0

-3.0 -2.0 -1.01.2030

-1.0

-2.0

FIGURE 4.1.2.3.3-7 THERMAL STRESSES FOR THE BEAM OF FIGURE 4.1.2.3.3-6
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4.1.2.3.4 Solutions For Discontinuous (Multi-Rectangular) Elastic Cross Sections

A wide variety of beams are of the composite or built-up type, fabricated
from extruded shapes, bent-up sheet, flat plates, etc. In most such cases, the elastic
cross section can be considered to consist of a finite number of rectangles as shown in
Figure 4.1.2.3-1(c) where the elastic width Eb varies discontinuously through the depth.

The solution for the deformations and thermal stresses in an unrestrained
beam of this type, for bending about a principal axis, as derived in Reference 4-1, is

presented below. In order to systematize the solution, a step parameter 7) is introduced,
defined 

as

In= + (kek-1ek) (1 Skm (1)

where, from Figure 4.1.2.3.4-1,

Ekbk
ek E b (width parameter)

k 1, 2,. .

"uk
'k=-d

n = number of rectangles less one

m = an integer.

Enbn.

nu=d

5 kd Ekbk u sd

1 dRef.

Eobo

FIGURE 4.1.2.3.4-1 GENERAL MULTI-RECTANGULAR SECTION
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S4.1.2.3.4 (Cont'd)

4. . Non-dimensional elastic section properties are expressible In terms of the,• step parameters as

EA(2
S = dEb 71 (2)

"U 772 (3)

EV 3 773 -)/2(4) "/=d3 Eobo

Note that the above expressions correspond to Eqs. (1), (2), and (3) of Para-
graph 4.1.2.3.3 for continuous section properties, where

+ +___ , _ ) I ___( +
(12 K - + +2 3 K-- + 3

have been replaced by 711, 772' and 773, respectively.

The deformation modes, for an aT profile expressed as a power series
n L

aT a ,are
- 0

V L 7- L +I (1)

(5)i

L= aL A (6)
6L = aL V1 7-- L+2 -'71L +1)()L 1

The total stresses and deformations are obtained, as in the case of continuous geometry,
from Eqs. (6), (7) and (8) of Paragraph 4.1.2.3.3. If the aT polynomial is higher than
the first order, then to obtain the stresses and defarmations, one must evaluate, in addi-
tion to '?1' 712 and 773, values of '7 up to '7n+2 where n is the order of the aT polynomial.
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4.1.2.3.4 (Cont'd)

The solution for the deformations and stresses of the unrestrained beam shown
in Figure 4.1.2.3.4-2 is illustrated below.

7. b E =10 x 10 (Constant)
7,=b3960 x 10

10.0 =d

10.=d OT= (1360s 2 +1300s +1300)x10 6

1.0

___T /_ V _ __

10.0b -6
1300 x 10

(a) Cross Section (b) aT Profile

FIGURE 1.1.2.3.4-2 UNRESTRAINED BEAM CROSS SECTION AND
TEMPERATURE DISTRUBITION

(1) The numerical calculaticu for the necessary step parameters, Eq. (1),
is carried out in Table 4.1.2.3.4-1(a)

(2) Non-dimensional section properties are calculated by substituting the
above step parameters in Eqs. (2), (3) and (4). Thus

= =7.2320

172 .0950
X - = .2320 = .4095

]= 17 - x ,2 = .0728 - .2320 (.4095)2 = .0339

(3) The solution of Eqs. (6) and (7) of Paragraph 4.1.2.3.3 and of (5) and (6)
above for the deformations is carried out in Table 4.1.2.3.4-1(b).

(4) The stresses are determined' Eq. (8) of Paragraph 4.1.2.3.3 by

a= E [-aT + C' + w' (u-

10E-6 1-6)
= -aT + (2259x10-) + (26. O (u-4.095)]

wherei = ii = (.4095) (10.0) = 4.095

WADD TR 60-517 4.48

14

- -~ ýZ



4. 1. 2. 3.4 (Cont'd)

to r

1-4 00-

-V 0o V1 L

. .

40 CO0- -

0I

r-4C 0CoC

1- c. C C
co -10t.- 0 0 0o

bO C4. 0 0M

P4 .ý M-

.C' 'P- *4 r m

C44

V-4  0-+ + + +
V- 0 -To-4 -4

0 o?0 Mo Go 0r 0 tC o / -% 0 -4 o o 0J L. 1

.0®C .0C

.~~~ ~ I q I 4 ,e00,IC ~

0~~ v-4 UU

rz~-r-4

00

-4 -4 4 -4

V-4 c-)jc'

WADD TR 60-517 4.49



4. 1. 2. 3.4 (Cont d)

xf

Cd

0

80 C-3

'44-

00

o o-4c

LO to 0
co I ~I 0

ot
0.
P4- CD

0o 0 m

oH

-..44 -

Ito-

m. M

~~C11
0)OD 00 0

_m t- - _ _

-. r4

+a IV n CDC

Q 0ol to II

+ 4o C) II

E)r~ CD 31

WA04 0R 6514.0 0



4.1.2.3.4 (Cont'd)

As in the case of continuous elastic geometry, the equations for the section pro-
perties and deformations are simplified if the elastic geometry is symmetric about the
bending axis (see Figure 4.1.2.3.4-3).

Ek bk
E Eb

________n nf

s --kkuk

Sl utd 0o0 -Ref. Axis

S I (Bending Axis
of Symmetry)

I I 8I-

----------------------------L--------I--
I I S = -

LT_ __ ... u i-

r- L• .
I d

FIGURE 4.1.2.3.4-3 MULTI-RECTANGULAR SECTION WITH A
BENDING AXIS OF SYMMETRY

in this case,the non-dimensional section properties of Eqs. (2), (3), and (4) reduce to

= EAX s - dEob' 271 (7)

U _

Is d (8)

and

El -=2 73 (9)
d Eb

where the step parameters are determined from Eq. (1) using the geometry on either side
of the reference axis and d is the distance from the reference axis to an extreme fiber.

The solution for the deformations is obtained, as in the case of continuous elastic
geometry, by decomposing the total aT distribution into components which are symmetrical
and anti-symmetrical about the bending axis (see Eqs. (12) and (13) of Paragraph 4.1.2.3.3
and Figure 4.1.2.3.3-5).
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4.1.2.3.4 (Cont'd)

For the symmetrical component of the aT profile, Eqs. (5) and (6) reduce to

ELs 2
(YL)s (a + a 17L+1 (10)

LwsLa s = 0 (11)(5Ls=(aL 0 'L/2

and for the anti-symmetrical component of the aT profile

( = L,a -0 (12)
(YL)a (aL - a'L)/ •

dwt

6 La(a= aL a' L)/2 s7 (13)

Once the deformation modes have been determined,the total deformations and
stresses are obtained by superposition from Eqs. (16), (17) and (18) of Paragraph
4.1.2.3.3.

Solutions of Eas. (10) and (13) are plotted in Figures 4.1.2.3.4-5(a) for tie
special case of two rectangles* (sections such as channels, "I" beams, tees and cruti-
forms conform to this configuration) with s = .97.

nI

* Practically all aircraft structural sections can be approximated by multi-rectangular
configurations with respect to the principal axes. See, for example Figure 4.1.2.3.4-4
in which a zee section is approximated by a symmetrical two rectangle geometry.
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tt

ago w
t' 2

ICOOO

m ;2 _ _ _ _ _ _ ............. .......

FIGURE 4.1.2.3.4-4 APPROXIMATE REPRESENTATION OF A ZEE BY
A TWO RECTANGLE SYMMETRICAL GEOMETRY
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4.1.2.3.4 (Cont'd)

Symmetric Temperature Distribution
(NOTE: (6 L)s = 0)

-En n•

E= d Ref.

Axis

u L

n = .97 TSn dT

1.0

.9

.8

.7

.6"

.4

0
0 2 4 6 8 10 12 14 16 18 20 22

n n
e E o b

FIGURE 4.1.2.3.4-5(a) ELONGATION (yL)s VERSUS WIDTH PARAMETER (e)
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4.1.2.3.4 (Cont'd)

Anti-Symmetric Temperature Distribution
(NOTE: (yL)a 0)

Eb

E- n bn-_

E 9b =17d d

Ref.

Axle

u
an d • .97

1.5 _

1.4

1.3 L

1.2

1.0
4:4

33

.3 .9

.8 4

.7

000-

1' .4

.33

0 2 4 6 8 10 12 14 16 18 20 22

E b
e=

0 b0

FIGURE 4.1.2.3.4-5(b) CURVATURE (6 L~ VERSUS WIDTH PARAMETER (e)
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4.1.2.3.4 (Cont'd)

The solution for a symmetrical elastic geometry Is illustrated below.

The box beam shown in Figure 4.1.2.3.4-6 is subjected to an aT distribu-
tion which varies through the depth as shown on the right. It is assumed that the aT
distribution is constant across the width. To find the deformations Z 1, w' and the thermal
stresses, it is necessary that the step parameters be calculated from Eq. (1) in Table
4.1.2.3.4-2(a); the deformation modes as given by Eqs. (10) and (131 are calculated in
Table 4.1.2.3.4-2(b).

Thus, from Eqs. (16) and (17) of Paragraph4.1.2.3.3,

n
z X ()L . x 10- 6  1518 x10- 6

L;=0

n

t (W')L, = • Col. x 10-6 73X 10-6

L1-0

and from Eq. (18) of Paragraph 4.1.2.3.3.
a E [ -cT + (1518 x10-6) + (73x10-6)u

Covers: Titanium, E = 15 x 106; Webs: Aluminum, E 10 x 106

4
iT = a~s = (600s + 600s + 600) 106

50:/ " •-

2

S4.011 ,+ Ref .
10 -Axis

.10 (ryp)-TP

3 
-

t) L [__(3 _

L =L a'= L(-s)L _[900-s)3 +600] o0-6

FIGURE 4.1.2.3.4-6 BI-METALLIC BOX BEAM WITH SYMMETRICAL GEOMETRY
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4.1.2.4 Power Series Solution - Corrections for Bending About Both Axes

The power series solution discussed in Paragraph 4.1.2.3 assumes that bending
takes place about only one principal axis UU . This is the case when the VV principal axis
is an axis of symmetry for both the elastic geometry and the aT distribution. Bending about
the VV axis (w. J 0) is caused by unsymmetrical geometry and aT distribution about the
VV principal ais. The correction requires the addition to the solution of the bending about
this principal axis VV. The final deformations are the axial elongation and curvature w' U

about the UU axis solved previously plus the curvature w' about the VV axis.
v

The final thermal stress is

a = E [-IT + V' + wv (u-u) + W' (v-V)1  (1)

Note that any distribution of aT can be solved by superposing the solution into two parts,
each being the solution for the average distribution (Figure 4.1.2.3-2) about that principal
axis. The solution about any axis can be accomplished by the power series or finite skm
method, whichever is most readily solvable.

4.2 STATICALLY INDETERMINATE (EXTERNALLY RESTRAINED) BEAMS

In Sub-section 4.1 it is shown that in externally unrestrained (statically deter-
minate) beams, thermal loads produce deformations and self-equilibrating internal stresses
which are compatible with the internal requirement of the plane cross sections remaining
plane. In externally restrained (statically indeterminate) beams, compatibility forces are
generated at the restraints in order to make the beam deflections satisfy the external (bound-
ary) conditions. These compatibility forces (redundants) and applied mechanical loads
produce stresses and deformations within the beam which are superimposed on the unre-
strained thermal stresses and deformations.

Paragraph 4.2. 1 discusses beam deflections which must be known in order to
satisfy compatibility conditions. A knowledge of the deflected shape of a structure is also
important from a design point of view.

Fixed end reactions due to distributed thermal and mechanical loadings are pre-
sented in Paragraph 4.2.2. It is subsequently shown in Paragraph 4.2.3 how distributed
thermal and mechanical loads can be replaced by their equivalent fixed-end reactions at
discrete structuaral load points, thereby facilitating the application of the methods of influence
and stiffness coefficients to the solution of indeterminate beam problems.

4.2.1 Beam Deflections

Under the assumption of plane cross sections remaining plane after defor-

mations have occurred (internal shear strain energy neglected), the deflections of
a beam subjected to combined thermal and mechanical loading can be determined
from a spanwise integration of the total unit deformations of the cross sections.

The total deformations, which are a function of the distance x along the span
(see Figure 4.2. 1-1), are obtained by superimposing the deformations due to
thermal and mechanical loading, i.e.; i
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4.2.1 (Cont'd)

wt) W 'W, W + w(X) ( , + M
El El

jt(x) --- •t() + 7(x)= + (2)
AE AE

where

wt(x) = Total rotation (curvature) of cross section per unit of length.

w' (x) = Rotation of cross section of unrestrained beam, per unit of length .M1
due to thermal loading = :

w(x) Rotation of cross section per unit of length due to applied and

redundant (mechanical) loading = -

EI

W t(x) = Total axial strain at elastic centrold

' (x) = Axial strain of unrestrained beam at elastic centrold due to thermal

loading = F'
TE_

S(x) = Axial strain at elastic centroid due to applied and redundant (mechan-

ical) loading - F
AE

The total curvature wt(x) and axial strain it(x) have the same significance in the
M Fcalculation of thermo-mechanical deflections that the familiar El and F for purely

M_ F' M
mechanical loading problems. Thus, once the quantities , __ , _ and

FE1 AE E1

F have been determined by the methods of Sub-section 4.1, the beam deflections can

be calculated, as usual, by energy methods.

y

(x)= ' +

%Z M' M

-- Wt (X) Elý ;

FIGURE 4.2.1-1 CURVATUREwx) AND ELONGATION Zt(x) DUE TO COMBINED
MECHANICAL AND THERMAL LOADING AS A FUNCTION OF
DISTANCE ALONG THE SPAN
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4.2.1 (Cont'd)

By the principle of virtual work, derivable from energy considerations (Paragraph
2.1.2), the deflection and slope at any point on a line structure subjected to combined me-
chanical and thermal loading (neglecting shear strain energy) are

A = - mdx +fit-fdx (3a)

e = -fwt ml dx +fit fI dx (3b)

where m and f are the virtual moments and axial forces, respectively, caused by applying
a unit virtual load at the point in the direction of the desired deflection component; m' and
fI are the virtual moments and axial forces caused by the application of a unit virtual
moment at the point at which the slope is to be determined.

The principle of virtual work equates the external work done by the virtual force
system acting through the actual external displacements to the corresponding internal energy
due to the internal virtual stresses acting through the actual internal strains. Because of
this, the deflection or slope at the point of applied virtual force is determined relative to the
datum defined by the reactions to the virtual force. The inherent advantage in this concept
lies in the fact that once the actual stresses are determined for a statically indeterminate
structure, the deflection or slope of any point on the structure can be determined relativ2
to a datum located in the vicinity of the point by dealing with the portion of the structure
lying in that vicinity, since the virtual stresses outside the region affected by the virtual
force system are identically zero. The virtual force system can be taken as a simple
determinate one, thereby avoiding the solution of an additional indeterminate problem in-
volving the virtual forces and considerably minimizing the work involved.

The preceding concepts are illustrated by the following problem in which Figure
4.2.1-2(a) shows the distribution of curvature and axial elongation in an indeterminate
beam; this information has been obtained from the solution of the indeterminate beam pro-
blem given in Paragraph 4.2.3.

Under the action of thermal and mechanical loads, a point initially located at 0
moves to the deflected position 0 . In order to determine the absolute deflection and ro-
tation of this point (Figure 4.2. 1-2(b)), the virtual loads must be reacted at points which
define a fixed datum. Point A, located at the fixed wall, provides one such datum since
this point has zero vertical and horizontal deflection and zero slope. TIus, as shown in
Figure 4.2.1-2(c), the virtual force systems are obtained by reacting unit virtual loads
and moments applied at point 0 by determinate shears, axial loads, and moments at point A.
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4.2.1 (Cont' d)

Substituting in Eqs. (3a) and (3b), the absolute values of the deflections and
slope obtained are

5 5
A -f wt- mvo +fot - fdx

-f(4.0 x2 _114. 1x + 2,31. 6)(x -5) dx +] xl10 6

0

= 1100 x 10-6 inch.
5 5 _

A oh f wtmhdx +f

= [0 + (2.0 x +0. 0 x-138.9) (-1) dx 0-6 = 486 x 10 inch.

5 5
E). f wt- ml dx+f: it V

"5-o (4.0x 2_-114.1x+261.6)(1)dx+0] xl0-6 = -49x10-6 radians.

Figure 4.2.1-2(d) shows the vertical unit virtual load reacted at point B. Point B
does not deflect vertically. However, a rotation doe3 occur at this point. Thus, the vertical
deflection of point 0 obtained by reacting the virtual load in this manner is equal to the ver-
tical distance from the tangent drawn at B tc the curve at 0' (Figure 4.2. 1-2(e)), or

10 2 -
SAt : (4.0 x + 10.9 x -363.4) (x-5) X 10-6 138 x 10-6inch.

OV f

The deflections of a beam-like structure can always be obtained by integrating the
curvatuxes and elongations as shown above. However, as shown In Paragraph 4.2.3, a more
efficient procedure for obtaining deflections, which lends itself conveniently to digital com-
puting techniques, consists of using flexibility coefficients (Paragraph 2.1.1.1). Ignoring
shear and axial energy due to mechanical loads, the flexibility coefficients are

mi mi dx
5 ij El (4)

through which it is possible to determine the deflection at a degree of freedom by super-
position, i.e.,

E 6i] p', (5)

where the Pj's are the negative of the fixed end reactions due to mechanical and thermal
loads, at thWe locations of the predetermined j degrees of freedom. One of tle advantages
of using this procedure lies in the fact that the flexibility coefficients are approximately
constant structural properties wh 4ch do not depend on the mechanical and only slightly on the
"thermal loading, Once calculated, they can be used to obtain the deflections for any set of
applied loads.

WADD TR 60-M17 4.62

! fK

• i



4.2.2 Fixed End Reactions

The fixed end reactions are those mechanical lcads applied at the ends of a
beam-like structure which do not allow the ends to move when the beam is subjected to
mechanical and thermal stimuli. The negative of the fixed end reactions to the applied
loads and temperatures can be shown to be equivalent mechanical loads acting at the
joints which will produce the same deformations at the joint. This is discussed in

Paragraph 2.1.6 and Reference 4-4. The transformation of mechanic-al and thermal
loads acting all along the structure to equivalent loads at the joints assist in permit-
ting the reduction of the structural problem to a finite number of unknowns. This as-
sists in a systematic procedure for solving statically indeterminate structures (also
referred to as indeterminate structures) subjected to mechanical and thermal loads as
shown in Paragrapl. 4.2.3.

4.2.2.1 Sign Convention

The sign convention for individual elemental beams is in accordance with
stanclard engineering practices which state that loads which cause tension in a member or
compression in upper (positive) fibers are positive. However, care must be taken in
determining the resultant fixed end reactions at a joint. This is shown by Eqs. (1) through
(3) and Figure 4.2.2. 1-1 which indicate that the resultant fixed end reactions at a joint in
the structure are obtained by first reversing the signs of the axial and moment reactions of
the beam to the right of the joint (the sign of the shear reaction of the beam to the right of
the joint is not changed) and then adding algebraically with the corresponding axial, moment
and shear reactions of the beam to the left of the joint. The fixed end reaction on each beam
is determined from Eqs. (1b), (2b) and (3b) of Paragraph 4.2.2.2 and (1), (2) and (3) cf
Paragraph 4.2.2.3. The analyst need not bother to combine fixed end reactions on the left
and right hand side of a joint until the final loads at a joint are required. This last step is
simple to do with Eqs. (1), (2) and (3) or Figure 4. 2. 2. 1-1, and is demonstrated in
Illustrative Problem IA of Paragraph 4. 2. 6.1 and in Figure 4. 2. 4-1.

TI
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4.2.2.1 (Cont'd)

x-()Joint

For Joint:

Positive P Loads are up (PL PLL + PLR) (1)

Positive F Loads are to the right (FL = FLL - FLR) (2)

Positive M Loads are counterclockwise (ML = MLL - MLR) (3)

Positive direction aad displacements and rotations are in the same direction as
positive loads and moments.

F_ F

r 1 svi M LL LR LRO
MP, M 31 POR

FOL (b) Adjacent Beams OR FOR

For Adjaceit Beams:

Positive curvature w when curve is concave downward
/ Inside of curve to right when going to right

Tensiie strains for upper fibers

Positive moment causes compression in upper fibers
Opposite in sense to positive curvature
Positive moment on right side of beam is counterclockwise
Positive moment on left side of beam is clockwise /

Positive trausverse loads are in positive y direction

Positive axial load causes tension in member
Positive axial load on right side of beam is to thc right
Positive axial load on left side of beam is to the left

FIGURE 4.2.2.1-1 SIGN CONVENTION FOR COMBINING FIXED END REACTIONS OF
BEAMS TO DETERMINE RESULTANT FIXED END REACTIOS'S AT
A JOINT
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4.2.2.2 Applied Beam Loads

Various types of loading conditions are consider, I to act on the beam. The
location of the load is arbitrary (Figure 4.2.2.2-1) but its .Stribution is assumed to be
expressible as a power function. Any loading can be apprc.imated by the superposition
of such loads at different initiation points (see illustrative problems in Paragraph 4.2.2.5)
The type of loading (Figure 4.2.2.2-1) is as follows:

(1) Concentrated Moment, M
(2) Concentrated Transverse Load, P
(3) Varying Transverse Load, q = q LI
(4) Concentrated Axial Force, F, with eccentricity, y k
(5) Varying Eccentric Axial Force (Shear Flow), =T

(6) Varying Thermal Curvature, w' = w'L

(7) Varying Thermal Axial Elongation, L'= E

With reference to Figure 4.2.2.2-1(e), let
Total transverse cantilever load at L due to applied mechanical loads

ML = Total cantilever moment at L due to applied mechanical load
¢.1

= Total cantilever axial load at L due to applied mechanical load

Then
P f1d aqL

L a dt + P + +P (a)
1 0

S7L = a q (1-9)dt + Pa + M -a ryd• -0 0
a a2q a rLyS•LL

(IL (rftl)(r+2) + M k+1 Fy (2a)

L a f df + F aL + F (3a)"ok+
L - ÷ =f + k + 1

L o L 0 rL1L2Sarq
+PL+L+= +PL (1by

ML Mo + PoL o+ PoL +rl)(r+2) + Pa M k+1 Fy (2b)

S~a TL

"F = F + •r= + a- L +F (3b)L o L -o k +1
where P' Mo, F are to be determined in order to find the fixed end reactions (P

Mo, ML Fo and FL).
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4.2.2.2 (Cont d)

SL

I~roqL' q -- qLr rr tk =

(a) Transverse Mechanical Loads (T) Axial Mechanical Loads

(M, P and q) (F and r')

Ka

(e) Unrestrained Thermal Curvature (dll Unrestrained Thermal Axial Elongation

-4---- F X---T

4-X 0

Mý- p .a a .-

(e) Internal Cantilever Load

S~FIGURE 4.2.2.2-1 MECHANICAL, AND THERMAL LOADS ACTING ON
CANTILEVER BEAM
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4.2.2.3 Determination of Fixed End Reactions

The mechanical loads (fixed end reactions) that are required at the end of the
beam (P , Mo, Fo) to negate the deflections due to the applied loads and thermal stimuli

are presented below in a general form (as derived in Reference 4-4) and are then reduced
for particular types of problems. The reactions at the other end (PL' ML' FL) are

obtained by employing the equilibrium Eqs. (1b), (2b), and (3b) of Paragraph 4.2.2.2.

The general solution for the fixed end reactions at the end of the beam (see
Figure 4.2.2.2-1) is as follows:

V ~c1
Po .-0L E0 w'L Pj,c +(Fy-M) po, c +e E (cC n)' (1 z)c-npLj~c o~c \ nI n, c

0Ln=o

YLyr L C~
+ k+ 1 Pk+1,c n( cCnnP k+l +n, c

- Ln-nc-n(a

O E 'L) 2 c

+r-f-)(r-2) k r+2,c Ie (cCJ) n (1- ,)c Pmr+2+n,c

-Io~ IPm~~•cn•nl- )e-n mlcnnc]

([ L)2qL)v e)Cfl nnn ]

(rl E r+2 m j +2,c + IF-M (CC e (1-nc

n=o

r+1 rL e r c (1 _,)c-n m

Fo=EIo•f + + e•_cCn r+r,c]

k 1,c fok , c +v n11-k•~n

v0  L fP c m +FC + (cC'n ()zl ( 1 _))"n f,4n,c'] a

nn-
+c1 ic (c Cnn( 1) cIn

where Lnc'k4lnc

= r Jc = 0+1)D [ + e ~l n+2 j+2(1 +-.)- (eb)

SMo /M

F 0 V F f , +e : 1 IC V __ (I-V

•72• =m fl~ir 0 I -- -" e ( c± - '$ )' + ( + c+c'2-/ (2b) I.

Eo Lj,cL 6 + c I
ý[j°c I

% V
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4.2.2.3 (Cont' d)

F
- 1 (3b)

where
D[=-4. +e[ e 3 - (c +1)(c +2) (c+3) + e2 2 (4)

(c +1) (c +2) (c +3)

and

j= exponent describing curvature variation due to temperature or the
moment variation due to mechanical loading, e.g.,

j = o, pure moment or eccentric axial load
when J = 1, concentrated transverse loadJ = r+2, for a varying transverse load, q = q Lr

k
j = k+1, for a varying eccentric axial load, T = rL T

and also
EI

e ELI 1 O bending stiffness ratio parameter (5a)ElIL L

EA
el -A 1 = axial stiffness ratio parameter (5b)

LAL

i = a/L = ratio of loaded length of beam to length of beam (5c)

c = power variation of 1/EI = Eo 1 e ()c (5d)

c'= power variation of 1/EA = EAo e x (5e)

E0 LIL = Bending stiffness at x = 0 and L, respectively

L'LEoAo ELAL Axi-•l stiffness at x = 0 and L, respectively

c Cn = (n+1) term of binomial expansion, i.e., the number of combinations of
c items taken n at a time = c!/n! (c-n)!

cCo = First term of binomial expansion = 1

The above equations are obtained by applying the mechanical and thermal loads to
the statically determinate cantilever fixed at L and determining the deflections at the free
end 0. The loads necessary to negate these deflections are P Mo ,and FO. The solution
is given in terms of each type of load and includes the effect of varying bending and axial
stiffness. Solutions are presented in terms of influence parameter (p. , m. , f. ) which

J, c J'c J'c
are the fixed end reactions (P 0 M0 , Fo) to a unit type of mechanical or thermal load. For

example, m MoJc - is the negative of the ratio of the fixed end moment, M, to the
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4.2.2.3 (Cont'd)

cantilever moment, L which would cause a Jth power variation of curvature on a beamwhose 1/EI varies as a power of c. Similiarly, p j c = ;'L and fJ, c = -L The

formulations and graphical aids can be employed to obtain the fixed end reactions due tomost types of mechanical or thermal loadings. The mechanical and thermal loads arefirst allowed to act ,, Lon the cantilever beam. Then the loadings and thermal deformation
are decomposed into a sum of loadings as described in Paragraph 4.2.2.2 and illustratedin Figure 4.2.2.2-1. Each component is then analyzed for the fixed end reactions (P
M , and F ) it causes. This analysis is done in accordance with Eqs. (1) through (5S orw % the gr'aphical aids, Figures 4.2.2.3-1 through -6. The total fixed end reactions are
the sum of all such effects.

Illustrative examples follow to illustrate the computation technique. Graphicalsolutions of the equations are shown for special conditions which simplify the general
equations by eliminating terms inside the summation sign (i.e., c = 0 or v = 1).
These cases are of practical utility and are shown in Figures 4.2.2.3-1 through -6. The
special conditions are:

(1) El constant and any distribution of applied load ( 4
(2) i/E1 varying linearly and moment expressible as a sum of power functions

initiating at point 0 ( v= 1)
(3) 1/El varying parabolically and moment expressible as a sum of power functions

initiating at point 0 (v = 1).

Equations (ib), (2b) and (3b) of Paragraph 4.2.2.3 are simpler to apply then (la),(2a) and (3a) thereof, but care must be taken that the correct value of j is employed for
each type of load.
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4.2.2.3 (Cont'd)
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4.2.2.3 (Cont' d)

0

Eror " _

-.05 L
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.10--- or/

-,0 I W,o
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4.2.2.4 Determination of Fixed End Reaction For Special Cases

CASE A: Constant EI (c=0, e=0, .. D=l/12)

The beam of constant bending stiffness (El) simplifies the general solution byc

making the term j in Eqs. (la), (2a) and (3a) of Paragraph 4.2.2.3 identically zero.

Solutions for P and M are obtained by elemental types of loads and the solutions are
the curves plotted in FAgures 4.2.2.3-1 and -2. The values of P and M are obtained
from the equilibrium Eqs. (1b), (2b) and (3b) of Paragraph 4.2.2. L

(1) Pure Moment M (J=O)

M

-a= v L

L 0

From Eq. (2a) of Paragraph 4. 2. 2. 2 and (ib) of Paragraph 4.2. 2. 3

L
-POL

+ [ 0 + Y +/]
PO, 0 = L = (9+1)0/12) 2• +0 +2'•

P = 6V (1 -Y) (Plotted in Figure 4.2.2.3-1) (la)
0,0

-L -MPo =-L---P, o =

From Eq. (2b) of Paragraph 4.2.2.3.

-Mo- - v - +0SM0,0 o -'2Z = 0+1)(1/12) 62 2

M = 11 (3Y/ -2) (Plotted in Figure 4.2.2.3-2) (1b)
0,0

S -MY (3v -2).

a.1
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4.2.2.4 (Cont'd)

(2) Concentrated Transverse Load P, (U i)

p
0

.a V 1= a/L

Employing the same equations as (1) above gives

L = Pa. PLL *

P1,0= (1+1)(1/12) [2 1-1+2

-PoL, -PoL-PL 0PL V (3 -2 VI) (Plotted in Figure 4.2.2.3-1) (2a)

L YPL=

P2
P= (3-2 Y) (2b)

*0 +I - VL - o
-Mo + 1 0)]

= m 0 =2(1/12) - 6 + 3 12 +

-M
0o m = - (1 - V) (Plotted in Figure 4.2.2.3-2) (2c)

p---L = m1,0

Mo 2
p-- = (1- V) (2d)

r
(3) Distributed Transverse Load L = --=r+2)

LL o

a 0

Employing the same equations gives
I22z/ /L2 q L

L = (r+1)(r +2)

V 6- ] (Plotted in Figure 4.2.2.3-1) (3a)Pr+2,0 - 77L r T+3 r +4

WADD TR 60-517 4.77- !4



4.2.2.4 (Cont'd)

I qL (r+l) (r+2) (r+3) 6- r +- 43b)

M r~
In -2 + 6 (Plotted in Figure 4.2.2.3-2) (3c)

_ = - + 6___

r+2, 0 L r +3 r+4

(3dqLL2 =-(r +1) (r +2) (r +3) -2 +4r

If r = 0 (uniform load),

0- (3e)

2 "3( 1 v (3f)

If r =1 (linearly varying load),

= 3 ( 1 1q 4 -O (3g)
qLL

M _L 11 v
=qLL2 312 20 (3h)

(4) Thermal Loading w ' w J
LL

L 4L

From Eqs. (la) and (ib) of Paragraph 4.2.2.3,

PL

oo L ; 12V 1•
Pj, 0-6 10 0 w 0  j2 v ORa)

pi, WL = +

! oL L6- 12+Y (4b)

PWADD T 6+1 j 4.2
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4.2.2.4 (Cont'd)

From Eqo. (2a) and (2b) of Paragraph 4.2.2.3,

m°= EoI~WL - • [-2+ 6t (4c)

=o (EJL w'L TF 2 +i 6 (4d)

(5) Distributed Axial Load T =T L •:k0=k +1)

LL

From Eqs. (2it) and (3a) of Paragraph 4.2.2.2 and (lb), (2b) and (3b) of Paragraph 4.2.2.3,

-aT Ly - YLTLY •

"'L k+l k+ 1

a T L YL T L
':L =k"l = k+ 1

POL

121,

Pk +l,0 (-IV (-LyTL)/k+l= k +2)1 k+3)

2IlL

Fro .12 an 1 oP a 4

YTL (k +l) (k+2) 2 a)+

LP

M 12, +(
ink+l, 0  (-1YLyTL)/+1 ( k +2 6 2(k + 3)

+10 6L v
[YF°L (k+1) 2(k +2) 3 k +3]

Fo(k+1

_k +1, 0 L +

(5c)

W LL D T+1) k 4+2)
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4.2.2.4 (Cont'd)

Equations (1) through (5) define the fixed end moments for all types of mechanical
and thermal loads on a beam of constant cross section. The solution can be obtained by direct
solution in the equations or from the graphical solutions presented in Figures 4.2.2.3-1 and
-2 for unit solutions which must be multiplied by 4-4L' -ýOL and -:L to obtain Mc, P and
F.0

CASE B: Variable El (cj 3) and Load Distributed Over Complete Span (v = 1)

Another condition of structural interest and simplicity is a beam of variable El
where the loads are continuously distributed over the entire span (V = 1).

From substitution of V = 1 in Eqs. (1), (2) and (3) of Paragraph 4.2.2.3 the
general solution becomes:

P ' Lyrf L L qf2 eP oL= EoW LPjc +-'iPk + c + 1 +c, )(r+1(r-+2) Pr+2,c+ePr+2+c,c (6a)

M EoIw' m + LyL +emk+L2 +1 (6b)0 00 L j,c k+1 k+l,c 1c (r+1)(r+2) r+2,c+L r+2+c,c

F EAEFf + k+1c' le'f +c' (6c)0F o EooLfj,c +k• +1 + 1, +1 klC,

where the values of p- c and mic are given in Figures 4.2.2.3-3 through -6. Terms such
as F, M and P are ignored since they are reacted directly at the support. (Note that recourse
must be taken to Eqs. (1), (2) and (3) of Paragraph 4.2.2.3 if cj0 or v #1).

1
Example: The equations are illustrated for a uniform load on a beam of linear - and

FElFI
EE =10.

LEL

q lb/in p j

K M~j
0

From the data,
EI

c =1, 00 = 0 0, r=0, q =q
El. L E ~LO L~q=

and from Figures 4.2.2.3-3 and -4,

Pr+2, c P2 , 1  110 r+2+c, c P3,1 = 115

mn Im -. 010 In In -028r+2, c 2,1 r+21c,c = 3,1

Substituting in Eqs. (6a) and (6b) results in
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4.2.2.4 (Cont'd)

P L 110 + 9 (.115)]
P Lo (0+1)(0+2)

P .573 q L

Lq [-.010 - 9 (.028)] 2
=- (0+1)(0+2) =.131q

Substituting in Eqs. (ib) and (2b) of Paragraph 4.2.2.2,

-PL=-.573qL+ Lq
= " 0+1

I ~PL . 427 q LLq LI
2 2QML .131 qL2 +(-.573 qL)L +To+,)+) =.058q L

L (+

The above solution to the problem is illustrated by the following sketch:

q lb/in.

.058 q jj ).131qL2

.42L q4 573 qL

LL

Note how the fixed end reactions increase on the stiffer end.

4.2.2.5 Use of Equations and Graphs

The technique of using the equations or graphs of the previous paragraph is
illustrated in a few simple problems which are purposely made simple to compare with
known solutions and to show the effect of variable stiffness.

PROBLEM A: Concentrated Load at Center of Span L

If P
M

ML 0PT _•t .• • ° .•

4 L/2
L

(1) Constant EI c = e =o (Note: Eq. (2b) and (2d) of Paragraph 4.2.2.4 could be
applied directly)

Using the graphical solutions,

PL PL
0 0=1

L, 1.0 (Figure 4.2.2.3-1, j 1)
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1.0.
PO= -P,0 = -1.0 .5 PL )
PO = -. 5P

From Eq. (lb) of Paragraph 4.2.2.2,

PL - (P+P)= (-.5P + P) -. 5 P-M -M
P v mL r 1,0 = -. 25 (Figure 4.2.2.3-2, J 1)

MO = - ml,o ML = .25 (.5PL)

= .125 PL

From Eq. (2b) of Paragraph 4.2.2.2,

ML Mo + PL + = PL (.125-.5 +.5) = .125 PL

The solution (using sign convention) follows:
.125PL +P .125 PL

.5P L/2 5P

Checking the solution by Eq. (2b) and (2d) of Paragraph 4.2.2.4,

P2 ~~ 3-2 (.5J -.5

M. = (.5) (1- .5)= .125

(2) Linear EI and EooELI 10 (c =1, e =9, Z/=.5)

From Eq. (4) of Paragraph 4.2.2.3,

1 12 12
D +e+(e 2/6) 23.5

From Eq. (la) of Paragraph 4.2.2.3 for Transverse Load Po'
SP I 0 1 = CLp i p ,, c + e _. [ ( C C n if ( I c -n &' .o L4l+ n'o Pl' +n, cj

%PL = -Y LP {pl1 1 +e [(1e 1)Pl 1 1 + ,p2  j}
%L -Y -'LP {P [ 1 + e (1 -,v)] v e
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The influence parameters P 1, 1 and P2 , 1 are obtained from Eq. (ib) of Paragraph 4.2.2.3.

(12 )+51_ {2 2 .5 [1+.5( } ( 1383pit,1 23.5 +1 2 6 1 +2 )

.(12) .(2 ) {+ 2+2 [1+.5(9)]} .1115P29 1 (2.5 2 ++ 1 6 2 +2

O -. 5p 5 5 (.1383) +4.5 (.1115) 631 P

PL (PO + PL) = P(.6312 - 1.00) = -. 369P

Similarly, from Eqs. (2a) and (2b) of Paragraph 4.2.2.3 for Moment

t12 N 9 +3-5- -02mI =(23- )(--) 7 --0426

2 1 . 1 9 3I=-

M =-LP m 1 ,1 [1 +e (1 -Yl) +m2,1 ve

Mo -0- 1-.5LP [5.5 (-.0426) + 4. .209PL

M =M +PL+ 2PL + (-.6312) + .5 078PL
L o L + 5 ]

ELIL P EOol 10 E I

.369 P ].631 P

+.078 PL +.209 PL
L/2

L I

PROBLEM B: Uniform Load in Center Third of Span and Constant El
q lb./in q lb./in q lb./in

v =.67 v.33

S L L/31 T -- 2 L/3- L/3- L/3 2 L/3 -.
From Eqs. (3e) and (3f) of Paragraph 4.2.2.2 (r=O),

P0  -(.67)3 - 12(.67) (3) .

qLL (1) (2) (3) 6 4 ]

8 -1 -3245
o *- (4) •- (5) 27o 27272 -1/6

qLL 6 6 6
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L 1 13 1/6
__-- = -(--i- +-- = -1/

M ~818 (-2+1) (-2+ 1/2)0o 27 2-7 8 -3/2 _-13.01
2 6 6 (27)(6) 12(27)

ML
= .0401 - .1667 + .1667 = .0401q LL

q lb./in

.167 qL L/3 L/3 L/3 .167 qL
L

+.0401 qL2  +.0401 qL2

Using Figures 4.2.2.3-1 and -2,

v = .67, P 2 0 = .89, In 2 0  -. 225

V= .33, P20 = .56, In 2 0 =-.167

PoL = -(.67 L)2 q 89)- J.33 L)2  -. 167 q 2

2 ((856)g.'56 Graphical solution

_(.67 _ L)332 jchecks analytical

MO -(.67L) 2  (1.225)- 2 (-.167) = .0407 q L2  equations.

PROBLEM C: Thermal Loading (v= 1)

A description of the thermal deformation is approximated by a power series.

1 2  ( n i

W LOD + Li (ML ~ L2 (WLLJ - wLi L
.J=

j n
LOE + C L-

1 = xLo +Li (LI " " " J

where x is the distance from the 0 end.

(1) Constant El and EA

From Eq. (4b) of Paragraph 4.2.2.4, and v = 1,
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Fo WL=f 6- + --. 6 -1'-122 + Jl 12
PO L + 0 +2) W+l 6-+1+2/+

00 L 12 1+121i+

-PLWL1 + WL2 " " ( - 12)] =6 0 -0 +2 L +1)(J+2) (7)

From Eq. (4d) of Paragraph 4.2.2.4 and v =1,

= E1 0  (-2 +o ) + (-2 + 6 (-)++
Mo 1 671 0 )/ 66

M. -- 6- wL2 +" + +1 ++2

(l-J) wL

=2E EIo (J+1)(J+2)

From Eq. (2b) of Paragraph 4.2.2.2,

ML 1Mo +P oL

W~ 6Eolo 2 J 19)

ML= Eo0 o wIo + WL1 + 6- WL2 +" J+1 2 (j+1 )(J 2 )

From Eqs. (3a) and (3b) of Paragraph 4.2.2.3 and v1,

F L Fo -EoAo 00 L + 2 "+ -J =-EoAo1j+ (10)

E11; =10; e 9)

(2) Variable (Linear) El and EA (c=1; EL 10 e9

From Eqs. (6a) and (6b) of Paragraph 4.2.2.4,
EI

00+. )
-PL P o = L (wLoPo, 1 +WLIPI,I+WL 2 P2, 1 +"

ML = Mo = EVIo (wL m 0 , 1 +WL ml,1 +wL2 2, 2 +... )

and mj 1 are obtained from Figures 4.2.2.3-3 and -4.

E I-PE 10 o L LWI.o (-.41)+ wLl (.05) +wL2 (.115)+...

ML =M= 00o [ WLo (+.46) +WL (+.067) +wL2 (.007) +.
E°Ao

Nf c'=1 and EA - 10 and el=9, then from Eqs. (3b) of Paragraph 4.2.2.3

and (6c)of Paragraph 4.2.2.4,
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FL FE 00A AL fJc 0  c f clL_= Fo -1 -- EjA, L

00 i 2 ___

E 0 EAo 0 2;LJ = -- EoAo 2: j +I 1

4.2.3 General Solution of Statically Indeterminate Beams

The solution of a structural problem requires the simultaneous solution of the
equations of compatibility and equilibrium. For linear stable structures it is poss-bie to
arrive at the final solution by a series of intermediate steps, cuts, (releases) and ,.estralnts,
each of which is an artifice to simplify the solution and whose total effect is zero. This is
analogous to the addition of a chemical catalyst which aids in the chemical combination of
various elements but does not enter into the final form of the chemical solution. Compat-
ibility and equilibrium are maintained (for each degree of freedom) at each Intermediate
step in the solution so that the final solution simultaneously satisfies equilibrium and com-
patibility but removes any cuts or restraints that do not exist on the actual structure.

The statically indeterminate problem is simplified with the introduction of
generalized coordinates (degrees of freedom). The relationships between these coordinates,
and the corresponding loads are sufficient to determine the stresses, and deformations in
the structure. The relationships are either the equilibrium and flexibility matrices or the
stiffness matrix (which incorporates equilibrium in its derivation). The loads are the
negative of the fixed end reactions determined in Paragraph 4.2.2. TIe solution is accom- 3
plished by solving the linear simultaneous equations obtained from the above relationships.

4.2.3.1 Degrees of Freedom

The solution to a stable structural problem is complete when all the loads and
displacements (stresses and strains) at each point of the structure are known to an accept-
able degree of accuracy. A beam-like structure can be visualized as a network of small
beams between points of structural interest, i.e., joints, sudden changes in geometry,
changes in direction, etc. The linear solution is also considered complete if the loads and
deformations of all such points are known. Thoý relative deformation between the ends of
the small beams, together with the loads acting on these beams, could then be employed to
determine the internal loads (stresses) acting on the beams. Thus the solution of a structure
resolves itseli into the determination of loads and deformations at the ends of the elemental
beams (all the degrees of freedom).

The possible deformations and loads which each end (point) of the elemental beams
could undergo are defined as degrees of freedom of the structure and are the "generalized
coordinates" of the structural problem. In a generalized spatial problem of three dimensions
there are a maximum of six possible degrees of freedom for a point. These are the displace-
ments in the directions of the three orthogonal axes and the rotations about these axes. In a
planar problem of two dimensions there is a maximum of three possible degrees of freedom
for a point. These are the displacements in the direction of the two orthogonal axes in the
plane of the structure and the rotation about the third axis which is perpendicular to the plane
of the structure. In many problems the structure will be such that some of the degrees of
freedom can be ignored. In some cases, the loads and deformations coresponding to a degree
of freedom tre independent of other degrees of freedom (uncoupled) and the structural pro-
blem can be solved as separate problems. In any case, all possible degrees of freedom should .
be investigated and simplified (omitted, uncoupled, etc.) before attempting to continue the
solution.
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In a given linear problem of n degrees of freedom, either the applied load or
deformation corresponding to each degree of freedom is known, or a known linear relation-
ship exists between the load and displacement. Thus there are essentially n quantities to be
determined before the structural problem is solved. The necessary n simultaneous equations
are supplied by the equations of equilibrium and/or compatibility at each generalized coordinate.

The solutions will be presented in matrix form to simplify the manipulation and
meaning of the equations.

4.2.3.2 Equivalent Loading

In order to minimize the amount of computations necessary to solve the structural
problem it is convenient to convert any arbitrary loading on a linear structure to a series of
equivalent loadings acting at the points of interest of the structure, which will cause the same
deformations as the actual loads and temperatures, at the points of interest. The interrelation-
ship between the generalized displacements and loads can be expressed by a stiffness (K) or
flexibility (f) inatrix for a given geometry and material prior to applying the loads. There
are various methods of obtaining K and f, some of which are demonstrated in Paragraph 2. 1.4. 2
and 2. 1. 3 and in References 4-5 and 4-6. The solution would then require obtaining equiva-
lent loads from any arbitrary loading and employing the stiffness and/or flexibility matrix And
the requirements of compatibility and equilibrium at each point of interest to obtain n (n de-
grees of freedom) simultaneous equations for the n unknowns. It is possible to solve the pro-
blem for unit loadings. This considerably reduces the work involved in analyzing a structure
for more than one set of loads, which can be obtained from linear combinations of the unit
loads.

The equivalent loadings at the points of interest are the negatives of the fixed end
reactions (see Paragraph 4.2.2). The fixed end reactions are exactly those mechanical loads
which, when applied to the elemental beams, will negate the end displacements caused by the
applied mechanical and thermal stimulation. Applying the negative of these fixed end reactions
to the elemental beams would cause the same defoi. mations as the applied mechanical and
thermal loads. If more than one beam has the same degree of freedom (adjacent beams, etc.)
then the equivalent mechanical load associated with that degree of freedom would be the nega-
tive of the sum of the fixed end reactions of all such beams.

The beam-like structure can be analyzed as follows:

(1) Impose rigid restraints (imaginary jacks) at all the n degrees of freedom of
the structure. The jacks are applied at all the joints. This includes the
reactions.

(2) Apply the mechanical and thermal loads on the structure and determine the
forces in the jacks. These are the fixed end reactions whose solution is
shown in Paragraph 4. 2.2.

(3) Remove the jacks and applied loads from the structure and apply the equiva-
lent loading (negative of fixed end reactions) to the actual structure.

(4) Employing the flexibility or stiffness method to solve the generalized forces
and displacements at the n degrees of freedom.

(5) Employ the forces and displacements at each end of the elemental beams,
together with the applied loads and temperatures, to determine the stresses
and strains anywhere in the structure.
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4.2.4 Mechanics of Solution by the Flexibility Method (Figure 4.2.4-1)

(1) Make sufficient cuts to the indeterminate structure to make it statically
determinate. That is, the internal forces acting at any cross section due
to an arbitrary mechanical load can be computed from the equations of
equilibrium alone.

(2) Every degree of freedom can be characterized by the following subscripts
(Figure 4.2.4-1 and Table 4.2.4-1):

(a, b) = subscripts for cases in which the applied (Pa = - Ra) is knowna )abut the deformatior Ab is unknown.

(x,y) = subscripte . )r cases in which the applied load is the unknown
cut (redundant = PxI load but the deformation (Ay = 0) is known and A
equal to zero.

(r, s) = subscripts for cases in which the load is unknown (P = ?) but
the deformation (A = 0) is known and equal to zero. The s sibscripts
refer to degrees of'freedom which establish the datum of the cut (sta-
tically determinate) structure. The datum defines the position in space
from which the displacements are measured. The number of subscripts
of the cut structures are limited to the number of equilibrium
equations of the cut structure (e.g., two subscripts for a straight beam
with no axial load, 2ZV = EM = 0). These coordinates are a sub-group
of group (x,y). The selection of this group is arbitrary. However, a
wise selection will reduce the computations in determining the flexibility
matrix and/or the accuracy and ease of the solution.

(c,d) = subscripts for cases in which the cut load (Pc) is unknown as
well as the deformation (Ad). There exists, however, a linear relation-
ship between the deformation and loads. The forces of the c type can be
visualized as redundants which are on elastic supports rather than on
fixed supports such as x type fdrces. The deformation Ad can be com-
puted, once all the loads acting on the structure are know, by the linear
relationship which exists between the loads and deformations.

All degrees of freedom described above can exist at a point in a beam, e.g.,
a rigid transverse support (y or s) with a flexible axial support (d) and with no
rotational support (b). Each degree of freedom is associated with two consecu-
tive symbols. One symbol denotes a load and the other symbol denotes a de-
formation. When a matrix is described by two consecutive subscript symbols
it expresses a relationship between degrees of freedom of the same type. When
the subscripts are not consecutive the matrix expresses relationships between
two different types of degrees of freedom.

(3) The properties of the sub-structure are computed. The equilibrium matrix gij
relates the loads to the reactions. The flexibility matrix fij ,the elements of
which express the deflection at i due to a unit load at J, is computed by various
method available in the literature, e.g., Paragraph 2. 1. 1. 1 and 2.1.1. 2 and
References 4-5 and 4-6.
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(4) The equivalent loads (loads in imaginary jacks) due to mechanical and
thermal stimuli are applied at all the degrees of freedom. Each point in
a planar structure may have three degrees of freedom and each degree
of freedom can be a different type (see (2) above).

(5) Equal and opposite unknown internal loads (Px+ - P and P = - P)

and applied at each side of the cuts. Pc and Pc act on sub-structure and

P and P act on supporting structure (Figure 4.2.4-1). These unknownX- c-N

(redundant) loads are exactly those required to maintain equilibrium and
compatibility at each cut.

(6) In essence there are n unimown quantities to find in order to be able to com-
pletely solve the problem. They are the b deformations (Ab), the x loads
(P ), the r loads (Pr), and the c loads (Pc). Thus n = b + x + r+ c.

There are r equations of equilibrium, b equations of deformation and x + c
equations of compatibility. These are sufficient, in total, to solve for the
n unkmowns. The following equations are in matrix notation:

"r" Equations of Equilibrium (E.M = 0, MV = 0, 2.F = 0, "r" < 3) for each
sub-structure)

-Pr =gra Pa + grc (Pc + Pea) + gr (P + Pa)

Pr (gra Pa + 9rc Pca +grx Pxa) + grc c grx Px -a)

-Pr - ra aP + grPc + gx (•b)

"b" Equations of Deformation

" b = a P + fbc (PC + PPa) + fb) + Pa)

" b = (fba Pa + f'bc Pca + fbx Pxa) + fbc PC + fbx Px (2a)

bA (2b)AD = fba Pa +fbce Pc + fbx Px 2b

"Ix" Equations of Compatibility of Cut Supports

0 = A =f P f ( p)f ( P )(3a)
y ya Pa ycf c ( c +Pa) +x x % xa

=ya a +fb Pc + fbx Px (3b)

"tc"l Equations of Compatibility of Cut Flexible Supports

-1 -1 (P +P&d = K) PC- = K ) -PC+) fda a d c cPa)
(4a)

-K ~c~ ~x(4b)
-'Q1 Pc f •da T-a + fdc PC + fdx Px 4b
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1131s 8 () 9 (b) 10(b) 11(b) 14(y

7 (s) 2 (b) 3 (y) 4 (d) 5 () 12 (b]
1 (s) 6 (yl

(a) Structure Under Load

~r7a ~a8 ~a9 ~al0 'all ~a12

(lPria p a2 p x3a Pc4a %a5 (tPx6a

x1Prl3 p! Pxl4aPr7 ýtprl l~3 lc4 px • -x14

(b) Load on Substructures

Psitive Sense Shown
R =Fixed End Reaction

+ -'R R x3L Rx3R p .. )x3a (Rx3R x3L) RaR a9 (Ra9R Ra9L)
SRa9L Ra9R

(c) Addition of Equivalent Load

FIGURE 4.2.4-1 FLEXIBILITY METHOD

TABLE 4.2.4-1 DEGREES OF FREEDOM

Type Total External Load On the -Beam Deformation Degrees of Freedom

(a,b) known unknown 2,5,8,9,10,11,12
(pd) unknown unknown 4
(xy) unknown (compatibility) known 3,6,14
(r, s) unknown (equilibrium) known 1,7,13
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0 =fda Pa + (fdc + 1cd) Pc Px (4c)

where

o geometry of structure employed in equilibrium equations (either 1Sor moment arm ratios li)

f = flexibility matrix of statically determinate sub-structure = deflection
at i due to unit load atj.(First subscript denotes the row and second
denotes the column of matrix. Second subscript of pre-multiplier
must be same as first subscript of post-multiplier.)

= flexibility of elastic supports of "c-d" coordinates = deflection of ddue to a unit load at c (note inversion reverses subscripts)

f = grouping of flexibility sub-matrices (f f fx)
ja ja Jc jx

P= grouping of load vectors = P
a which represents the a

equivalent applied loads.

AI = deflection at "T"

P =load at "all (due to applied loads = negative of fixed end reactions)a

P. = equivalent load at coordinate "i" due to applied loads (neg. of fixed end
ia reactions)

P c Px = redundant (cut) loads.

The solution of the simultaneous equation results in unit type solutions
in terms of (g. , f. K 1d) and the applied loads ( =r P. (Reference 4-5).

in ij, ii cd~ ple a ra-" rnc
SPca.

The loads and displacements at each point of interest are as follows:

PC = H P(5a)Pc = ca Pa
P =La Pa (Sb) "

xP x ~a a

A b = mbaa (6a)

Ad c Hca Pa cd c (6b)
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SA=A =0 (6c)

y s

where

H -- d c) -ueo foj (7)

L,~~ H-f f influence coefficients of the (8)Lxa (fyx)-1 ya + fy ca uncut structure (similiar to

influence line)

r g.I gr. I grx) I-I- influence coefficients of the (9)
I H uncut structure

ca

tuba = (fba 'c ,x= flexibility of the uncut (10)

Equation (10) represents the flexibility of the statically indeterzinate

structure whereas fi represents the flexibility of the cut structure.

The problem is simplified to a great extent if no flexible supports (c, d
degrees of freedom) exist. In that case,

P = f-I f P (1a)yx ya a

= ~ ''~C-f~a}(l1b)
A (ba fb.) ! } a ~ (12a)

A = A =0 . -(12b)
y S

4.2.5 Mechanics of SoUton by the Stiffness (Slope - Deflection) Method (Figure 4.2.5-1)

(1) Place imaginary jacks (restraints) at each degree of freedom which fixes all
degrees of freedom in space and will not allow them to move no matter what
loads are applied.

(2) The stiffness matrix Ki is obtained by forcing one of the imaginary Jacks to
move a unit deformatiol while all the others remain fixed in space. Thee
loads Imposed on the imaginary jacks are noted as K1t (load at I due to a
unit movement at J). Note that element KiJ = 0 for alA points i which are not
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aK =k a + kh+

Imgnr Jacks ab~f~~ tab .

Ab-1

(Note: I[ '- kj

Ill.iab rb)

A1 2 3

1111111-7 7k rbt b r

A) Imaginary Structure Krb(kr-b+ kr,+ kr•

b) Determination of KII

Pa (Applied Load)
-Pa (Fixed end reacloD.n n I Kb= Pa

*mgnr f "b LrP

c) Applied Stimulation To Imaginary Structure d) Structure With Imaginary Jacks Removed

aPa tpatp. where PJ a a
a ab N a KabIl -1

SAb P / =krbj Ab =kr~ alP

r -rb rbj'-I Kabl ra
S Pl = kab plAb' r bAp bP; =k2

~ rb 'Ab

p2 -kb2AAD. P2 =k 2~a Ab' r rbAb i
t~ a Lb' r rb A

e) Loads In Individual Members

FIGURE 4.2.5-1 STIFFNESS METHOD
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in the Immediate vicinity of J since there is relative motion of the Jack only
at J. It should also be noted that all elemental beams meeting at a common
degree of freedom are springs in parallel since they all have the same

motion and the K = 0 kJ where 0 is a force at i due to a unit deforma-

tion at J of elemental beam bounded at J. The values of the elemental 0 1 s
are given in Paragraph 2.1.4.

(3) The mechanical and thermal stimuli are now applied to the restrained
structure and the equivalent fixed end loads are resisted by the imaginary
jacks.

(4) Since the displacements at the degrees of freedom resisted by the imaginary
jacks, it is assured that compatibility at each point of interest is satisfied.
Equilibrium at each joint is maintained by loads in the imaginary jacks which
exactly balance the equivalent applied loads resulting from loads acting on the
elemental beams between the joints.

(5) The degrees of freedom can be characterized by the following subscripts:

(a, b) = subscripts for cases in which the deformation is unknown (Ab) I
but the applied loads are known (Pa).

(e, f) = subscripts for cases in which the deformation (Af is unknown

but the applied load is zero (P = 0). This coordinate does not require
an imaginary jack except for tte determination of Kej

(r, s) = subscripts for cases in which the deformation is known to be
zero (As = 0, an actual support) but the redundant load (Pr) is unknown.
This coordinate does not require an imaginary Jack since the structure
supplies an actual Jack (restraint).

Note that elastic supports (c,d) need not be specified by generalized co-

ordinates but are separated into two components. The elastic member
is incorporated into the overall structure and coordinates (c,d) which
described where the elastic member supported the sub-structure be-
comes (a, b); the other end of the elastic member which represented the
actual datum becomes (r, s). The (x,y) coordinates are in the general
(r, s) group.

(6) Remove all imaginary jacks. The structure will now deform. The load in
the imaginary Jack produces deformations. The final deformation will be
one in which the equivalent applied forces are exactly balanced by the forces
produced by the relative deformation of the elemental beams whose common
ends all deform the same amount (KA = P). The jacks could have been re-
leased one at a time and then reapplied; such a procedure would be a trail
and error method (e.g., Hardy-Cross Moment Distribution Method).

(7) The requirement of equilibrium at each degree of freedom results in the
simultaneous equations

k ab AAb +KafAf +Kas A- Pa=0 (1)
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Keb "b + ef Af + Kea As Pe O (2)

Krb Ab +KrfAf +Kr As -Pr =0 (3)

The boundary conditions are:

P =0 (4)

A 8 0 (5)

whose solution is

Ab =+ ab Pa 6a

Af =-Ke KebK P (6b)

P=K K P(7a)Pr Krb -- ab Pa

Pr + Pra =(K K ) p total reaction (including (7b)
r r rb ab loads directly applied to

SraP reactions)

where

K = (Kab - Kaf Kef Keb) = flexibility of actual structure

= tba of flexibility method, (8a)

-1Krb = (Krb - Krf Kef b = reactions due to a unit de- (8b)deformation at b

Pý = equivalent loads acting at points other than the supports

Ira = equivalent loads acting at the supports

ab = load in Jth member at "a" due to unit displacement at 'b"

The end loads on each elemental beam are

SP. (9a)a ab aba

i -- 1
r K Pa (9b)

which are combined with the loads and temperatures applied to the beam to
obtain the stresses and strains. R

4.2.6 Selection of Method of Analysis

SThe best method to employ cannot be decided arbitrarily but must be evaluated
after due consideration is given to the structural problem as regards the computing tools

and time available, supplementary structural information (e.g., available solution of sub-
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structures larger than the elemental beam), past experience (ease of visualizing pro-

blem), etc. Generally, if the structure is primarily a set of elemental beams (e.g.,
cantilevers) in series, i.e., the number of d +y degrees of freedom is less than the
number of b degrees of freedom (d + y < b). then the flexibility method is better*. If
however, the structure is primarily a set of elemental beams in parallel (bents, etc.)
in which d + y > b, then the stiffness (slope deflection) method is better. When the
number of redundant degrees of freedom is relatively small it is usually simpler to
visualize the flexibility method. As the number of redundant degrees of freedom in-
creases, howevir, the selection of the simplest datum becomes more and more complex
and the stiffness method which does not require selecting a datum (the datum of the
actual structure is employed) becomes less Involved. Because of the lack of engineering
intuition required in the stiffness method it is more easily adaptable to computing
machine techniques. The flexibility method becomes more and more involved as the
generalized coordinates (c, d) increase in number, especially when loads can be applied
on these elastic supports.

The flexibility and stiffness methods of solving beam-like structures are
illustrated below. The problems are treated in great detail to familiarize the analyst
with the methods of analysis. The following problems are considered:

PROBLEM IA - Statically indeterminate beam by the flexibility method

PROBLEM IB - Statically indeterminate beam by the stiffness method

PROBLEM II - Sandwich beam by the flexibility method.

4.2.6.1 Problem IA - Statically Indeterminate Beam by the Flexibility Method

The beam shown in Figure 4.2.6.1-1 is loaded with mechanical loads and
temperatures as described in Figure 4.2.6.1-2. It is required to determine the re-
dundant loads on the structure. The problem is solved in the following steps:

(1) Determine and classify the degrees of freedom of the beam from the
geometry (Figure 4.2.6.1-1).

(2) Establish the static equilibrium equations.

(3) Establish the flexibility matrix by methods described in Section 2 of this
Manual.

(4) Invert the flexbillty.matrix associated with the cut redundant loads and
express the cut redundants in terms of the applied loads.

S(5) Obtain unit solutions of the redundant loads in terms of the applied loads
by combining (2) and (4).

(6) Apply the mechanical loads and temperature and determine the fixed end
reaction by employing Paragraph 4.2.2.

(7) Substitute the negative of the fixed end reactions into the relationship
established in step (5) to obtain the solution shown in Figure 4.2.6.1-3.

* The number of s degrees of freedom is not too significant since the geometry matrix
(g,,) need not be inverted.
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4.2.6.1 (Cont'd)

S10• 10 -

P 7 --- , ; -- P8

4 p5  p6

FIGURE 4.2.6.1-1 BEAM WITH DEGREES OF FREEDOM

(1) Classificaton of Degrees of Freedom

(Uncoupled Since Beam ,

Susrp edn oStra*gh) ,Axial

,s) 1 (2.V=0) 4(.M=0) ,7(ZH=0)
(O,y) 2, 3
(ab) 5, 6
(c,d) -- 8

(2) Equilibrium EquaUons (Ref. Eq. (1b) of Paragraph 4.2.4)

-r= gra Pa + gr PC + gx 1ýr

_ [l r 1 1 0 0 0 1 1 Pl1

P4JL0 10 -0 1 1 1 10 20 P2a

p3a

L4a aý rP (1)lP8

P6a

Ip2

(3) Flexibility Matrices (Constant El and EA) 3

2 3
2 333 8 33

El =83 (Reference 4-6) AE f8 8 =20

3 83 2667
2 3 5 6

Elf = 2 333 833 50 50

3 833 2667 150 200]
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4.2.6.1 (Cont'd)

(4) Inverse (Stiffness)

1 1 .01373 -. 00429 1 -1
El yx -. 00429 +.00171 -f =.05

From Eq. (4a) of Paragraph 4.2.2.4, the cut red-udant loads can be solved
in terms of the applied loads.

FD_- = + l -1 -8=
x ya K8 P8 f + P8 f88

( rw o 1 0 0 04 -. 172) 1' 8a8
P3 0 0 1 0 .043 .129 P21 -8 f 58 +1/K 8

P P8 P 1 + AE/PsL

4a LaP4a 1AE fK 8,dI

P5a. _ _ _ _ _ __td

6 - P8 I+AE/K8 L

(5) Unit Solutions

-P2 -2+ .043 •5-. 1 71 66

-P3 P3a + .043 P5a +.129 P6 a

-P1-- 1= - .086 P5a +.043 P6a

-P4 = P4a- .29 P1 a +.14 p6a

b = fbaPa + fbxx P

EJ5 = 1.40 P5a - ..7a5

EI&6 = -. 75 a + 2.80 P6a A8=

(6) Applied Loads

aT = 400(10)-6K 8 = 106 lb/in.

-5 _ E =10 llb/in.2
ST 100 b 1lb A = l sqin.

T 1 .08 in.4
a T=_100(_6 d = in.

1ar--10(1-aT Linear Through
aT-=200(10) a200(l0)4 Depth a.g. at (L of

-10" - I--- 10" • Cross Section
2 3

FIGURE 4.2.6.1-2 TEMPERATURE AND LOAD ON BEAM
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4.2.6.1 (Cont' d)

Thermal Distortion of Cross Section:

aT - ToT T +T
wt (Linear Distrl- g -I =d 2dbution Through

Depth) (c.g. at % of Cross
ISection)

The aT values are given at discrete points o! the structure and are assumed
to vary continuously. Since there are valkt s at three station (end stations
and mid-station), the best parabolic curve passing through these three values
Is selected. This results in

0-< x<-0 1 06wl = 4x - 20x 106 •. = 2 2 +10x

105x <20 10 6 w' - 200 106 1 =300

Fixed End Reactions:

Mechanical Loads (we illustrative problems given in Paragraph 4.2, 2. 5)

0!5< x _< 10 •-100 -12 lb. /in. 10<-x!520

T+50=R1 /R2L -+,50] + 60"R 2R +60=R

125R4RL = -125 1 -100=R -100=R 6

P= -100,'y=.5 Iq=-12, Y/=1.0

Thermal Loads (see Eqs. (7) of Paragraph 4.2.2.5)

-0W 400 1w

400 I 0200

=L2 I r7-7-w=LOkTR1 R2LT R5 R. RRR

R4 14 4/U///////////I

200- 200 5L

10 6 W ' = -200 - - " ' = W l

L WLi

00 w? +wI +... Li +--L 6L L, L2 -+
7 -6 7 -6 I

SRL =1tI= 1 (.08)10) (-200 +400) (.0 (08)(10) -(0)=0 '

S0! = 2R :_R3
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4.2.6.1 (Cont'd)

-R 2 L = R1 = -16 + 32= + 16

w
:2 +6-+

Ro Eoo W 0 -"6 L+ .... 53.3J

4 (10)7 (.08)(10)6 (o -- 400 =-53.3 (

I +160=R
SRR

ML= MO + PoL

RSL=-53.3 +10 (16)=106.7 160 +10 (0)=160=R 6

116 -161
k1 ý60 +160

-55.3 +106.71

The total equivalent loads are obtained with the aid of Eqs. (1) and (3) of

Paragraph 4.2.2.1

R = RLL+R

S=50 + 16 =66= -a

+R =50 + 60 -16 =94= 2a

=R3.60 = p3a.

ML MLL M LR

+Ra 0-[ (-125)] [--,3.) = 178.2 ~4

+15.= -M -5(-100) + [ +106.7 - 160] =78.3 = -P55

46a = (-100 - 0) + (160 - 0) = 60 = -P 6a

(7) The Reaction Loads are Obtained From the Unit Solutions.

-P2 = -94 + .043 (+78.3) - .172 (-60) = -80.31 lb
-P 3 = -60 + .043 (+78.3) + .129 (=60) = -64.37 lb

-P1 = -66 - .086 (-78.3) + .043 (-60) = -75.31 lb

-P 4 = -178.2 - .29 (+78.3) + .14 (-60) = -209.31 in-lb
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4.2.6.1 (ContG d)

Since the beam is straight, it is easier to determine P8 by direct solu-
tion of the compatibility equation.

Sdx °10 (2x +lox) dx +fo 300 dxt]

8a = L = 201
Jo -x dx (1)10 7

1 [2 (0)3 + 10 (10)2 + 300(10)] = 2083 lb= -• -2 3 2 ( 0

- P8 a 2083 1389lb

1 + AE 1 (10)7

~KL i +106(20)

1389 1389

75.31 80.31 64.37
209.31

FIGURE 4.2.6.1-3 SOLUTION

4.2.6.2 Problem IB - Statically Indeterminate Beam by the Stiffness Method

The bending portion of the above problem is solved in the following steps:

(1) The degrees of freedom are classified.

(2) The stiffness matrix is determined by methods described in Section 2
of this Manual.

(3) The displacements are determined from the equilibrium equations
at each degree of freedom. This requires inverting the stiffness
matrix.

(4) The redundant loads are expressed in terms of the displacements, to
obtain a solution in terms of the applied loads.

(5) Repeat steps (6) and (7) of Problem IA.

Classification of Degrees of Freedom

(r,s) = (1, 2, 3, 4)

(a,b) = (5, 6)
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4.2.6.2 (Cont'd)

Stiffness Matrix - The stiffness matrix is determined as shown in
Figure 2.1.4.3-1.

Unit Displacement at
K 3 6 2 5 1 4El

3 .012 -. 06 -. 012 -. 06 0 0

6 :-.06 .4 i.06 1 .2 0 0

-. 012 .06 +.024 0 -. 012 -. 06d = (.012 + .012) =(-.60 + .06)
0o .8

5 -. 06 2 =(.06 -. 06) = (.4 +.4) +.06 .2

1 0 0 -. 012 .06 +.012 .06

4 0 0 -. 06 .2 +.0 6  .-4

Equilibrium Equations and Displacements

P5a + K5 5 A5 + A56 N 0 = P5a + .8 EI15 + .2EIA6

P6a + K6 5 5 + K6 6 % = 0 P6a + .2 EIA5 + .4 EIA 6

EI A5 = 1.43 P5a - 7 2 P6a (Check flexibility equations of
Problem 1A)

El A6 = -. 72 P5a + 2.85 P6a

Reactions

1 K15  •16 A 5 .06 0 1.43 72 [5a

P2  _ K2 5  K2 6  % _ 0 .06 -. 72 2.85 LP6J
P3  5• K6 -. 06 -. 06

.2 0
P4 K45  K6._ .2 0

IRI
P1  .086 -. 043 P5a (Checks Flexibility Equations of

Problem 1A)
P2 .043 .172 PI--a
23 043 -. 129 136

P +.286 -.144]
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4.2.6.3 Problem II - Sandwich Beaw by the Flexibility Method

"The sandwich beam of this problem is subjected to temperatures of Ti and T2

above the datum on the top and bottom faces, respectively. A general solution is presented
for the stresses and redundant forces in the sandwich beam in terms of geometry and end
fixity. The problem is solved by utilizing the geometric relations for a sandwich beam
established in Paragraph 4.1.2.2, solving for the unrestrained deformations, determining
the fixed end reactions, and solving for the reactions and stresses.

.Geometry (see Figure 4.1.2.2-1)

E1A1 h h (See Eq. (1) of Paragraph
S1 AI+E 2 A+ E2A2 1 + e 4.1.2.2)IAI+ E A 1 A E 1---

Unrestrained Deformations

a1 TI- LTL a1TIT (1 2T2 ) ,ITI
w1 = -h h ( 2 h (1-a) (SeeEq. (3) of

1 Paragraph 4.1.2.2)

- EIAlaT1 + E2A2•T a
1 1 A1 + 2A T 2 a1T(1 • ae (See Eq. (2) of Paragraph

E AI + EA2 A911 e 4.1.2.2)

01 =2 1 0 2 T(See Eq. (4) of Paragraph
4.1.2.2)

where

E2A2 •2T2
e = EIA1  and a alT-

Fixed End Reactions

Po = 0 Mo TE w' Fo = - EA (See Eqs. (1) through (3), Paragraph4.2.2.3;Po, =0 m =1 f =1)
where0 00 00

EA = EIA + E2A = A1(1+e)1 1 2 2 E1 1

El =EA h2 _ 2 (E A + E2 A2 )
1 11 11 22

"= EAI h2 (1 I +e )= EAh2 e1i 1 e2 1 +e
(1 + e)

E (IE-a) E EIA)a T1 h et1-a)MO= 1l1+eh+e

Fo = -EIA 1alT1  + ae)
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4.2.6.3 (Cont'd)

General Solution

fdc Pca +fdc Pce-K• Pc

=- fd. + KY fdc P~ca

Let KF Axial stiffness of support and KM = Rotational stiffness of support.

1 -1(-Fl
•_ • • ~ ~EIA1 ( + e) +EI1 1 )e

EAllT (1 + ae) e
AF = - EIAI( +e) +

FKFF[ 0I

SEIllElT1 h(e(1-a

=1 + e(2a)

K F

EAh 2  e

SKM+

I- -'&-e (3a)

F A _2 _ _e_1r1

___.... 1 (+e Axial Shortening Cau..- .by Flexible Re- (lb}S1 +1 stralnt (K F)

KM

[E (+e)+ ____

E0"1 1 +(1 +ae) + ( (+e)
KF KM
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4.2.6.3 (Cont' d)

E 2T el +a
'2 1 +e EIA1 (14e) E1Ah (3c)KF +1 1 +(1

KM

If K K 0 (unrestraine2), then a, a2 = 0. (3d)

It KF = KM = o (completely restrained), then

-Elti T
a,. 1 +e (1 +e) = - EIaIT1  (3e)

-E 2E2 alT1
S02 = 1 +e p(1 +e)=- EaT (3f)

4.2.7 Curved Beams

If the beam is straight, the axial problem can be separated from the bending problem.
•his cannot be done in a curved beam, and the problem must be solved with all the degrees of
freedom at a point coupled. Most curved beams in aircraft structures are frames of relatively
few load redundants, and the flexibility method is utilized since the frame is essentially a re-
strained cantilever beam. The utilization of equivalent loads requires determination of fixed
end reactions which are quite complex (except for special geometries and loads) and which
"do not reduce the computation work except in problems involving many redundants.

The flexibility of the frame which results from mechanical loads is primarily de-
termined by the bending.flexibility. This is because of the bending energy of the frame, due
to mechanical load&. is usually much greater than the axial aid shear energies. This can be

seen by comparing the values of ds, r-jE ds, and fA--G ds. The axial
energy due to temperature Vfids), however, may be a significant portion of the thermal bend-
ing energy (f -w' Ids) and should be included in the calculations. The change in axial and
bending stiffn-esses due to temperature can be quite significant and can be calculated with the
aid of equations in Paragraph 4. 1. 1. 1.

The frame problem is solved by the flexibility procedure. The structure is made
statically determinate by cutting the frame, fixing one end, and applying redundant loads
(XM, XF and X - Figure 4.2.7-1) at the cut to enforce compatibility. The deflection at the
cut Is computed by virtual work in terms of the mechanical and thermal deformations times

r the virtual forces and by the redundant loads times the flexibility coefficients.

Let fFp (etc4 = Element of flexibility matrix; deflection at cut in k' (axial) direc-
tion due to a unit load in P (radial) direction

XM (etc) = Redundant load at cut in M (rotational) direction

ImF (etc.) = Internal virtual force of m (rotational) type due to a unit load at
cut in F (axial) direction

A (eta) = Deflection at cut in P (transverse) direction due to applied loads,
• "temperature, and redundants.
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4.2.7 (Cont'd)

u a

: "\e Fiber •

AA

v

Sy Outer Fiber
SqXF

X Section A-A

1. Tension is positive (increasing axial strain T)
2. Compression on inner (upper) fiber is positive (increasing curvature w)
3. Inward shear is positive
4. e = Angle from negative Y axis to normal through section measured counter-

clockwise
5. Applied clock.Ase moments "are positive
6. Applied horizontal loads are positive to the left
7. Applied vertical loads are positive in the up direction.

FIGURE 4.2.7-1 SIGN CONVENTION

The flexibility coefficients, neglecting axial and shear energy, are evaluated from

the virtual moments shown in Figure 4.2.7-2. The results in matrix form are shown as
follows:

m am~m ds mM Fd- InmMmInp ds. f!ý fyds f xds
fMM fMF fM E EIJ E'I JEI EI

_____ r pm=mP Ey fy Ei

ff mF E ds E -ds P s o EI

FM fFF fFP JE! EI El El El El

o m Pxds fxyds rx 2ds
fjm?•TM d fm~ ds J mEI _j EI JEI El

f M fP F -P P E ld_ l d E l j - l1

The following compatibility equations express the requirement that the relative

motions at the cuts are zero. The virtual forc3 system is the unit load at the counterclock-

wise side of the cut with reactions on the other side of the cut.

A AM =f[(-w -w') mM + ( +•')fM. ds + fMMXM + fMFXF +fMPXP= 0

.AF =f [L(-w mF + ( +' +•)fF] ds + fFMXM + fFFXF +fFPXP= 0 (2a)

lp=f -w -wf) mP + (" +W')fP] do + fPMXM + fPFXF +fPXP = 0
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4.2.7 (Cont' d)

or

!{d~ftdsX~ fA.+XfV +xp/xfo=o
ds f w' ds +_XM f + X F yd, E--EI El rEI ÷. •_

-.X - Jwt yds +Jc coseds + XMf EI + XFf + PfE 0 (2b)

Exds JwI xds - c sinEdx + XMJ ?EL + Fd E + Xpf 0
f l ffEI FET P.EI

where fM=0 and fI" cos e ds and.f• sin 0 dx are usually small and assumed equal to
zero.

The redundants XM, XF# X p are obtained by solving the simultaneous Eqs. (2b).

x

(441
M=3.

ii = m~=Fm=1
riM IIn= mp=X

f =0 fF cos fp =-sine

P 0 PF + sin 0  pp= +cosO

FIGURE 4.2.7-2 DETERMINATION OF VIRTUAL FORCES m,f,p
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4.2.7.1 Values of e wt and M

The values of W' and w' can be obtained by an analysis of the cross sections as
shown in Sub-section 4.1.

A simple approximation of the aT distribution in a cross section is to assume
a linear variation through the depth. In the case of a linear distribution, the values of T
would be aT at the centroid of the cross section and the value of w' woule be the difference

of the (aT)Is divided by the depth (w = h ) . The linear varia-

tion of aT usually results in a good approximation of the distortions of a cross section ( '
and w' ) due to temperature. These are the parameters that determine the redundant loads.

The moments on the cantilever (cut frame) beam can be determined by statics of
the applied loads,

Mn

i=l H

or can be obtained in a table based on incremental moments, as follows:

" "+ = Mn + AoMn + Mvn + AMHn (1)

where

VnI 1 Vn + AV ; Vn Vn (X,, - xn)

Hn+1 + AMn = Hn (n+i-n)

AM MR = Moment about (n-1, yn+i) of all loads between (xn yn) and (xn+1,
Yndl)

AVn = Vertiepl load (positive up) batween (x , yn) and (xn+1 , yn+l)

AH = Horizontal load (positive to left) between (xn, yn) and Xn+1 n

(yY.) = Coordinates of centroid of nth element

AS n = Length of the nth element.
Notes: (a) Frame length between xn,, y.) and (,n+1 , yn+,) is equal to .5 (Asn + Ash+)

(b) The loads on the frame must be self-equilibratiý.g. This -should be checked
before the deformations due to the applied loads are calculated. (See last
row of columns 32, 34, and 42 of Table 4.2.7.3-1).

It is advantageous for the purpose of analysis to:

(1) Keep the lengths of As small so that section properties are fairly constant in
each AS

(2) Start new segments when sections change radically
(3) Locate a station (centroid of segment of length As) where load changes slightly
(4) Make As zero where maximum stresses are expected (concentrated loads, etc.)
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4.2.7.1 (Cont' d)

The total loads acting on any section are

979Zn =Mn + XM + Yn XF + x Xp

n= (Hn + XF) (cos E) + (Vn +Xp) (-sinXe)

=-- (n + XF)(4sine) + (V + Xp) (+ cos e)

4.2.7.2 Special Cases

The solution of the curved beam problem can be modified in special cases to
reduce the amount of computations. The following cases are considered:

Case I - Symmetrical Structure
Case II - Elastic Center Method
Case III - Relaxation of Boundary Conditions

Case I: Symmetrical Structure

in many structural problems the geometry s, AE, El on one side of an
axis is a mirror image of the geometry on the other side, e.g., El (y , +x) = El (y, -

X). This is usually the case in aircraft structures (except for some slight variation due to
temperature effects) because of the probability of the load being applied from either side of
the frame. When the structure is symmetrical, some of the influence coefficients
(f- ==f fP xyds =F ) are identially zero and the othersJ = fIMP = PM = El =FP = PF

need only be evaluated for half the frame and then doubled, e.g.,

4 s(27r) s(r)f yds y2 y2ds2. 2
o EI o EI

where s(ir) = length of frame between E = 0 and 7r)

The solution is simplified as follows:

X= w( fxds -f d f 'sin 0 ds)/fx;ds

x• [f •'V +f Y ( .i-fwds kj f w'~s
El[fW l .Mds rfw{(fs +2sf 1cos ds)j ~ (a
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4.2.7.2 (Cont d)

If the applied loads (thermal and mechanical) are also symmetrical, e.g., M (Yn' xn) =

M (Yn' -x ), then the radial deflection of the cantilever (in P direction) due to applied loads

is zero and the other deflections need only be evaluated for half the frame and then doubled.
If the applied loads are antisymmetrical, e.g., M (Yn' Xn) = - M 'Yn' -Xn), then the hori-

zontal deflection and rotation of the cantilever is zero and the radial deflection is evaluatedfor half the frame and then doubled. The following equations summarize the solution of

symmetrical frames since any loading can be separated into symmetrical (S) or antisym-
metrical (A) components.

For symmetric loads:

XPS 0 (1b)

oS ()T) 2 •E (fos(T) fos(T)

y El yL i- Mds f l wds)

= f0 00 0ýMs EIMoyds _ d

EE (lb)

For antisymmetric loads:

XMA = ; XFA 0 (ic)

s(T) s (r) s(r)
_ Nxds w' (x)ds -f 9 sin 0 ds

lElcf

XPA 0 0 o1c

x dsEl

Case II: Elastic Center Method

By transforming the reference axes to the "Principal Elastic Axes", it
is possible to diagonalize the flexibility matrix. This reduces the three simultaneous equations
to three single equations which can be solved quite readily. The solutiors can then be expres-
sed as

X -(f dsfw'ds)

=-(fŽ•~.-fw'yds +f•,eos o' ds)
x'F =: (,,2 d s I
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4.2.7.2 (Cont' d)

X = (M-2IdS fwtxlds2-f 'sinetds) (2) cont'd
Pf(x)2 ds
J El

where all the above terms are described in Figure 4.2.7.2-1.

It is seldom advantageous to employ the elastic center method unless the location
(6, y) and direction (V)I is readily discernible. In the case of symmetry about the "Y" axis
the value of p = 0 and x = 0 so that y' = y - y and x1 - x. If symmetry exists about both axes
it would be advantageous to establish the origin at the center of symmetry.

yt YA

. x,

F -
yA

00.- X -.

x

FIGURE 4.2.7.2-1 ELASTIC CENTER METHOD

The transformation equations are:
y, = (i-Y) cos V - (X-x) sin P

S= (y-j)sin 4p + (x- )cosq9 (3)

01= e -2
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4.2.7.2 (Cont' d) 2xyds

tan 2 47 
2  EI

fv~ds .2 fx
SEl El

= ffdsl
y %r' A I --

E El
X:xs JEI /JEI-

Case MI: Relaxation of Boundary Conditions

It is often convenient to determine the effect of changing the frame by inserting
hinges, etc. It is also convenient for computational techniques (digital, etc.) to maintain
a standard form to solve all frame problems. Employing the same virtual force system
permits to use of standard tabular forms or digital procedures without modification for
each special structural problem.

Equations (2a) of Paragraph 4.2.7 can be viewed as the relative deformations
at each side of the cut. if a hinge existed, then AM would not equal zero but the redundant

load XM would equal zero.

For the case with a hinge, the compatibility equations become
I E-•I-If y ••F" fy2 dsE X r xyds (a

dE wt yds +.f_'cosOds + X + X= 0 (4a)

Mx -s Iw x ds -s 'sin 0 ds+ xFf ds + xpJIx = 0 (4b)

Solution of these equations results in the redundant loads X and X . Note that

the tabular form shown in Table 4.2.7.3-1 can be employed to obtain Wife desirA1 quantities.

4.2.7.3 Sample Problem - Frame Subjected to Thermal and Mechanical Loads

Table 4.2.7.3-1 is designed to solve a general frame problem with a maximum
of three redundants. The problem selected was a special one wherein the structure and loads
were symmetrical. It was chosen in order to indicate the simplification of work and calcula-
tions which result when symmetry of loads and structure exists. Only half the rows in the
table need be calculated and many-of the columns can be eliminated as indicated below.

(1) Column 8 (denoted by A ) need not be computed if the structure is symmet-
rical since •2 (8) would-equal zero.

(2) Columns 15, 19, 22, 24 and 27 (denoted by 4B ) need not be computed if the
loads are symmetrical since Z of these columnsu would equal zero

(3) Columns 13, 14, 17, 18, 23 and 26 (denoted by @©) need not be computed
if the loads are assymmetrical since the Z would be zero.

The summation (value of integral) of the column is therefore eitl;er twice the
first half (2 = 2 t ) or zero since the value of the symmetrically located station in the
second half is either the same or opposite to that of the first half. The first half of columns
21 and 22 is usually computed for the purpose of employing Eqs. (2) of Paragraph 4.2.7.1 in
obtaining the total loads acting on a cross section.
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4.2.7.3 (Cont'd)

Any load distribution can be decomposed into symmetrical and antisymmetrical
components by dividing the load vector into two equal parts and applying one of the
halves to the structure with its symmetrical equivalent and applying the other half with Its
I antisymmetrical equivalent as shown in Figure 4.2.7.3-1. Using the sign convention
for applied loads, a symmetrical load would be defined as

Mi=-Mi,

Hi = Hi,

where iI is the station symmetrical to I and an antisymmetrical load would be defined
with opposite sign. II

i~I P/21 I IP2 P/21 IP2IPI I P/ 1IP 2

S- I t

(a) Load 0() Symmetrical Load (c) Antisymmetrical Load

FIGURE 4.2.7.3-1 RESOLUTION OF FORCE INTO SYMMETRICAL AND
ANTISYMMETRICAL COMPONENTS

The mechanical and thermal load, together with the geometry of the frame,
is shown in Figure 4.2. 7.3-2. Te solution of the frame problem is obtained by
employing Eqs. (lb) and (1c) of Paragraph 4.2.7. 2 with the values obtained in Table
4.2.7.3-1.

6-
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4.2."7. 3 (Cont' d)

2000 (Neg)

9 8h (Constant)

21000 (Neg)

'4¥

1ý4

x 2

,aT

+H

Sign Convention for
Applied Ioads

FIGURE 4. 2.7.3-2 FRAME PROBLEM
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4.2. 7.3 (Contf d)

For symmetrical geometry and load, Eqs. (1b) of Paragraph 4.2.7.2 are
utilized.

= [v' ®ý (Z' Z© @ (Et V + ® E' fl ]
M ~ -(~ ® )2

-218,006 (10) (-34.0755

- 376.995 (10)- -11,118,000 (10) 7 - (-427.56 + 9.761 aT
-7 7 h lo-2

(12.5665) (10) (15,740) (10) - (ý76,995 11) 7) 2

lXM = 13652 in lb - 67. 388 (10)6 a•T + .361 (10)6 atT
h

XF = 2

X = 10333 lb + 1.3424 (10)3 .T 022 (10)6 aTAt
XF -. 2h(0
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SECTION 5- THERMO-ELASTIC ANALYSIS OF JOINTS

This section considers the thermo-elastic analysis of mechanical joints. The
analysis presented is directly applicable to problems where the stress levels lie in the
elastic range (low ductility materials such as the ceramics, refractory materials, beryl-
lium, etc., generally remain in the elastic range almost to failure). In addition, certain
aspects of the analysis are shown to be of value in the solution of problems with stress
levels in the inelastic and plastic ranges.

As shown in Figure 5-1, a mechanical joint is one that is composed cf plate-like
materials joined by fasteners (such as rivets, pins or bolts) for the purpose of load transfer.

I

FIGURE 5-1 MECHANICAL JOINT

It is assumed that the heat conduction problem has been solved for the temperature
distribution in the joint. To find the loads in the attachments and the stresses in the crossz
sections for the known temperpture distribution and a given applied mechanical load, two
classes of problems will be considered. The first is the one-dimensional case, wherein
eaca plate is restrained from deflecting out of its own plane. The second case to be con-
sidered is the two-dimensional problem wherein the plates bow or deflect out of plane.

General solutions are presented and it is shown how these degenerate to the more
familiar elementary joint equations when the applicable simplifying assumptions are made.

The following symbols are used throughout this section:

e Difference between attachment and attachment hole diameter (slop), Inches
f Attachment-hole flexibility factor, in/lb
h Plate thickness, inces

Runnin subscript
j t The jth attachment, or bay

w Rotation of a plate per unit distance due to thermal loading (thermal curvature,
as e Paragraph 4.1.1.2)
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x Iongitudinal distance along splice, inches
Distances from elastic axes of top and bottom plates, respectively, to the
contact surface, inches

y Distance in the thickness direction, inches

A Cross section area, square inches

AE Effective axial stiffness of a plate; f EdA (see Paragraph 4.1.1. 1), lbs.
AJNj BiN Nol'-dimensional coefficients for the determination of attachment loads

) J (Figure 5.1.2-1).
D Diameter, inches
E Young's Modulus, psi

EI Effective bending stiffness of a cross section, (see Paragraph 4. 1. 1. 1), lbs-in2

I Cross sectional moment of inertia, in4

K Stiffness, lbs/In
L Longitudinal spacing between adjacent attachments, inches
M Externally applied bending moment, in-lbs
N Total number of joint attachments
P Attachment shear oad, lbs
T Temperature, degrees F
X Mechanical load, lbs
Z Non-dimensional ratio of axial flexibility to attachment-hole flexibility

ca Coefficient of thermal expansion, in/in-OF
A Unear displacement, inches; an increment
0 Slop displacement between adjacent loaded attachments, inches
? Axial strain of a plate due to thermal loading; fEczTdA/ f EdA

Free axial thermal expansion in the plane of the plate; f Z dx, inches

Subscripts

B Refers to bottom plate
IN Refers to the jth attachment, or bay
JN Refers to the jth attachment of a splice having N total attachments
T Refers to top plate

A
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5.1 THE ONE-DIMENSIONAL PROBLEM

The general problem is simplified if the overall geometry of the joint does not allow
the joint to bend out of plane. Such conditions are realized when, for example, the joint
consists of a splice strap in a flexurally rigid beam flange as shown in Figure 5. 1-1. In
such a case, the problem is one-dimensional in that the joint displacements and attachment
loads are essentially dependent on the axial flexibility of the joint components in the direction
of the applied external loading.

/A

FIGURE 5.1-1 SPLICE STRAP FOR A RIGID BEAM FLANGE

The solution for the load distribution to the joint attachments is obtained by satisfying
compatibility conditions for the joint displacements and the equilibrium equation.

The following analysis is applicable to a mechanical joint composed of two arbitrarily
dissimilar elastic materials. It is assumed that the attachments initially fill the holes and
that each attachment-hole combination deforms elastically under load.

The presence -f "slop" (which results from a combination of manufacturing tolerances
and differential thermal expansions between the plate holes and attachments) and its influence
upon the load distribution, is then considered. A detailed derivation of all solutions is pre- 8
sented in Reference 5-1.
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5. 1. 1 The Joint Equations

Equilibrium

Figure 5. 1. 1-1 shows a longltudal section through a typical joint under consideration.
Denoting the shear load acting at the j attachment by Pj, equilibrium of forces requires that

N

j=1

where a tensile applied load X and attachment loads acting to the right on the upper sheet are
considered positive.

2L.

A A
XX

A I

i ,

FIGURE 5.1. 1-1 ONE-DIMENSIONAL JOINT EQUILIBRIUM

S~Compatibility Conditions

As shown in Figure 5.1. 1-2, compatibility of displacements requires that the axial con-
traction or expansion of the plate material at the common surface, measured from a datum
(defined by the unloaded, unheated spacing between the centerlines of adjacent pins) must be
identical for the upper and lower plates.

A-.A

P 2

X4

kwam
FIUR 5.DR6-1 5.5 N-IENINLJIT QIIR~
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i.1.1 (Cont'd)

L Initial Pin Position

ai Final Pin Position

Conmumon LI+A
Surface

24

FIGURE 5.1.1-2 ONE-DIMENSIONAL COMPATIBILITY

For the jth general bay the compatibility equation is

A. =
IT = AjB" (2)

where the subscripts T and B refer to the top and bottom plates, respectively. For the

one-dimensional case with no "slop" present, there are basically two types of deformation
which contribute tr. the Aj, I of the joint.

The first type of deformation is the uniaxial stretching or contraction of the sheets due

to the combined effects of temperature and mechanical loading. Referring to Figure 5.1.1-3,
the uniaxial stretching for the jth bay is

Sj L.
:-:" (3a)

SA (jT= X P L + -jT dx (

S~T

j Lj (3b) "

Pi L + f0 dx •:

where a positive A :n2 rcases the spacing between adjacent attachments and 23b

- EaTdy

f hEdy

If the thermal gradient is linear through the thi:-kn•ss, then i" is approximately equal to the
value of caT at the plate midplane. -
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5.. s Cont'di
IN •, I- x-:x P,

ZA

AIJJ-1 Pi J•J

i-i~J £ J++1

FIGURE 5. 1.1-3 DEFORMATION OF THE JOINT DUE TO AXIAL STRETCHING
OF THE SHEETS

The second basic typn of joint defornuation occurs because the internal joint loads
create local distort~ons of the holes and atttchraeats as shown in Figure 5. 1.1-4. The
deform~tion is expru ssed in terms of an experimentally determined attachment hole flexi-
bility factor f for the given attachment-sheet rombivation (Sub-section 5. 3). Thus, for
the top sheet,

jT (j= I j JT

and for the bo~ttom sheet,

AlljB P -ij+I f (J+l)B + P JfJA (4b).

Substituting A.T Alj + A~jT and AB=AB jBfromn Eqs. (3)1and (4) into

Eq. (2) yields, After rearranging terj-.-s,

-- . (T E I i Pj+I 151 AE j

SI 

J

W AIAJ =• (JT-•.B d5.7

'4and II

F\.•IGURE•' 5.1.1-3 DEOMTO 5O.H7 ON DET XA SRTHN



5.1.1 (Contd)

S• = P.+ I f(j+l)T

Pj -- 1, • fjB Pj~ • j+If (j+I)B

j+11

FIGURE 5.1.1-4 DEFORMATION OF THE JOINT DUE TO LOCAL DISTORTIONS
OF THE HOLES AND ATTACHMENTS

The compatibility Eq. (5), which constitues-N-1 equations, together with the equili-
brium Eq. (1) provides N linear algebraic simultaneous equations for N unknown attach-
ment loads, P. Since Eq. (5) is in the form of a recurrence equation, it can be used to

express all the attachment loads in terms of I'the load in the first attachment, that can

then be evaluated from the equilibrium equation. Solutions can also be obtained by solving
the simultaneous equations directly or by iteration and relaxation techniques. In general,
no simple relationships exist between successive Pj' I . This difficulty arises from the fact
that the recurrence equation coefficients are variable since they are functions of flexibilities
and temperature distributions which may vary from bay to bay.

5.1.2 The Special Case of Constant Bay Properties

Consider the case where the flexibilities of the sheets and attachments, as well as
the temperature distribution, are the same in each bay (constant bay properties). From a
practical point of view this situation is attained when the sheet thicknesses are constant.
the attachments are all of the same type, size and spacing, and when the temperature varia-
tion through the splice thickness does not vary appreciably in the direction of mechanical
loading. Tae coefficients of the P Is in the compatibility-recurrence Eq. (5) then become

constant and a general solution can be obtained with simple relationships between successive
Pi8- ThusL Eq. (5)becomes
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5.1.2 (Cont'd)

-AE B] PIC= i ifX ( L )E (1)
L )T+ L )BI I I• T1)

(j=1, 2 .... N- 1)

where
L
0¢ (C-T cB dx

0

and

f f'T+fB

Eq. (1), together with the equilibrium Eq. (1) of Paragraph 5. 1. 1 yields the following solu-
tion for the joint loads:

AE T jN B. A (2)
PJN = AN + BiN (L f1N

IT 
h

where the subscript JN refers to the jth attachment in a joint of N attachments. Values of
the coefficients AjN and BiN vs. Z, where

are plotted in Figures 5. 1. 2-1(a) through -1 (j) for J = 1--5 and N= 2 - 20. Equations for

the numerical calculation of these coefficients are derived in Reference 5-1.

By interchanging the designation of the top and bottom covers, the curves presented can
be used to obtain all of the loads in joints having as many as ten attachments. When the total
number of attachments exceeds ten, the curves give the loads in the first five attachments from
either end of the splice.

The first term on the right hand side of Eq. (2) represents the contribution of mechanical
loading to the attachment load. The second term represents the contribution of thermal loading.
Thus, Eq. (2) conveniently separates the thermo-mechanical problem into its superimposable
components. Note that for constant bay properties the thermal component of load at the center
of the joint must be zero from a symmetry argument. Therefore, the center bolt of an odd
number of bolts has no load due to thermal effects (Figure 5.1.3-2). Because of this, B239
B3 5 = B 4 7 .... = 0, as indicated in Figures 5. 1. 2-1. In addition, it is significant that when the

joint has constant bay properties, the attachment loads due to thermal loading alone are sym-
metrical about the center of the splice which yields BN = -BNN, B2 N -B etc.

N WN T(N-7)N5

WADD TR 60-517 5.9

=EQ,



5. 1. 2 (Cont'd)

4 ________

ZIA

=We

C~j-Z4

AD. TR605175.1



5. 1. 2 (Contl d)
__0

ico.

wy a.
0_il -

4i L7L-- _
ju~

w wI

/ 'II jr izll.ý, - __

fAD T-- 605751
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5. 1. 2(Cont d)
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5.1.2 (Cont'd)

The solution for the attachment loads in a joint is illustrated by the followitg problem.
A titanium plate and an aluminum plate are bolted together with six attachments as shown in
Figure 5. 1. 2-2(a). Find the attachment loads when the titanium and aluminum plates are
subjected to uniform temperature rises of 300*F and 70°F, respectively, and a mechanical
load X of 20,000 pounds is applied to the joint.

It is assumed that the bolt hole flexibility has been determined experimentally to be

f = .900 x 106 in/lb (See Sub-section 5.3).

Considering the titanium plate to be the top plate, the plate flexibilities are:

T .1 1 = .356 x 0-6 in/lb,

S = =0-6 A

AEB (1.5)(.250)(10)x lob 6

Since the temperature rise in each sheet is uniform, the incompatibility due to unrestrained
thermal expansion in each bay is given by

, = [(AT)T - (c"AT)B] L

= - 6.5(300)- 12(70)] x x10

= 1110 x 10 inch.

The above quantities are now substitute. into Eq. (2) resulting in

P. A. 356 (20 000)0+

)jN AjN + BjN (.90) (20000)+BjN (i0)

or

P. 20,000 A + 9135 B.
JN jN JN~ W)

The coefficients AjN and BJN -re now determined from Figures 6. 1. 2-1 for

) = (.356 + .267) = .692

and N= 6.

WADD TR 60-517 5.20
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5.1.2 (Cont'd) /-TITANIUM
AT a 300OF

SI IN. / Eu15XIO LB/IN2

S Oa " 6.5x10"t IN/IN-OF

20.000 LBS. ~ 4n fri
1 .125 IN.

.250 IN./,

I ZfALUMINUM

20,000 LOAD N TOP) PLAT 70F3

EzIOXlOS LB/IN2

(b)

759003 400D IN800 T390 P

3,84

200 0 ,0 I , I

7590 3400 1800 1390 1980 4030

W2BOLT LOADS

3400 44030
1 I00O 1390, 19801

•:FIGURE 5.1. 2-2 JOINT WITH CONSTANT BYPOETE
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5.1.2 (Cont'd)

A1 6  = . 0140 Figure 5. 1. 2-1(a)

A26= .0239 (c)

A 3 6  = .0500 -(e)

A4 .1090 -l(g)

A 5 6  = .2450 - (4)

B = .8000 Figure 5.1.2-1(b)
16

B 2 6 = .3200 -1(d)

B3 6 = .0880 -

B4 6 =-.0860 -1(h)

B5 6 =-. 3206 -(J)

The curves give values of AjN and BiN up to j = 5 and the splice under consideration

has 6 attachments. In order to obtain the coefficients for the last attachment, the designation

of the top and bottom plates as shown in Figure 5. 1.2-3 must be Interchanged such that the
last attachment (J = 6) In the original designation becomes the first attachment (j 1) in the
interchanged designation.

Denoting quantities in the interchanged designation by primes, results in

Bottom Sheet
SsTop Sheet

x
x

(3) 6

(a) Original Designation

Top Sheet

ottom Sheet

(b) Interchanged Designation

FIGURE 5.1.2-3 ALTERNATE TOP AND BOTTOM SHEET DESIGNATION
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5.1.2 (Cont'i)

-6f' =f=.900x10 in/lb

L 267 x 10-6 in/lb
T B

~~ (4 ) 356 x10 in11b

A0, = -Ad = -1110x 106 in

Z' = Z =.692

and from Eq. (2),

A' jN .'267)BIjN] (2 0,300) - B'tN 00

or

PN = 20,000A' + 4693 B' 5)
j;N jN JN

As in expressions (4) .
A'16 A16 .0140

B6 = B =.800016 16
From (3) an i (4) ,

16 20,GOO .0140) + 9135 (.8000) = 7590 lbs

P = 20.,000 (.0239) + 9135 (.3200) 3400 lbs

P36 20,000 (.0500. + 9135 (.0880) 1800 lbs

P46 20,000 (.1090) + 9135 (-.0860)= 1390 lbs

P 5 6  20,000 (.2450) + 9135 (-.3200)= 1980 lbs,

and from (5 ) anJ (6).

P tP =20,000(. 0140) + 4693 (.8000) =4030 lbs.

Equilibrium Check

N

, P = 20, 190 lbst-20,000 lbs

j=l

% iifference = 20,000 x(10) 5%
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5.1.2 (Cont'd)

The load in the top plate and the attachment loads are plotted in Figures 5. 1. 2-2(b)
and (c). The results show that the maximum load occurs in the first attachment and that
the two end attachments carry more than half of the total applied mechanical load. When
the bay properties are constant the maximum load always occurs in an end attachment.
However, as discussed in Paragraph 5.1.3, when plastic deformations occur in the vicinity
of the bolt holes, the bolts tend to carry equal loads.

5.1.3 Constant Bay Properties - Rigil Sheets

Now the case is considered in which the sheets have negligible axial deformation
as ccmpared to the deformations caused by local distortions of the holes and attachments
(rigid sheets).

From a practical point of view, this condition is realized when the plates are thick
and the attachments have small diameters -- or, when local yielding causes the effective
attachment-hole flexibility factor to become large as compared to the axial flexibility of
the sheets.

In the limiting case,

L 0 and(L)'3
T B

and the compatibility Eq. (1) Gf Paragraph 5. 1.2 reduces to

j +1 j f

•,r, in terms of the first attachment load .

P = P1- (-i) . (1)

P 1 is obtained by summing Eq. (1 over the total number of attachments:

N N
t. =X=NP1 -i 0-1)J=l f j I

NPI N (N-1) f

or

P -+ (2) -

1 N 2 f

Substituting ( 2 ) in (1 ) results in

P '1=.+(+ i (3)

Equation (3 ) gives the attachment loads for a given thermal and mechanica! loading and a
known value of attachment-hole flexibility, f
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5.1.3 (Cont' d)

The solution ehows that for the cpqe of constant bay properties and infinitely rigid
sheets, the mechanical load distributes equally to the attachments while attachment loads
due to thermal effects vary symmetrically about the transverse cenierline of the joint with
magnitudes inversely proportional to the attachment-hole flexibility (Figure 5.1.3.2).

For high loads which cause extensive plastic deformation in .he vicinity of the attach-
ment holes, the effective attachment-hole flexibility may become large as compared to the
sheet flexibility, in which case the solution of Eq. (3) is approached. if these plastic effects
become large enough, the increase in f tends to wipe out the effects of thermal loading with
the result that:

P~ -
j NThis indicites that near the failure of ductile mater'ials, the mechanical load '.ends to

distribute equally to the attachments regardless of temperature distribution. The
effect of an infinite sheet rigidity for the splice of Figure 5.1.2-2(a) upon attachment
loads may be calculated where, as before in Paragraph 5.1.2,

X = 20,000 lbs

f = .900 x 10-6 in/lb

AO2 = 1110 x 10-6 in.

N= 6

However,

A0T.

Substituting the above in E4. (3),
20,000 (6+1 )1110

Pj 6 2 = .90

or

P. = 3,333+ (3.5- j)1233

Thus:

11 = 3,333 + (3.5-1) 1,233 = 6,420 lbs

P2 = 3,333 + (3.5-2) 1,233 = 5,180lbs
P3 = 3,333 + (3.5-3) 1,233 = 3,950lbs

P4 = 3,333 + (3.5-4) 1,233 = 2,720 lbs
P5 = 3,333 + (3.5-5) 1,233 = 1,480lbs

P6 = 3,333 + (3.5-6) 1,233 = 250 lbs

and 6
P. = 20,000 lbs
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5.1.3 (Cont'd)

The results are plotted in Figure 5. 1. 3-1. It is seen that the attachment loads vary
linearly with the distance along the splice. A comparison with the flexible sheet results of
Figure 5. 1. 2-2 shows that the attachment loads in the rigid sheet solution drop off constartly
as one proceeds from the first to the last attachment, while in the flexible sheet solution the
attachment loads are minimum at the center of the splice and build up toward the ends.

Load In Top Plate

20,000

8,400

4,450

6,420 5,180 3,950 2,720 1,,t,. 25.)

Plot of Bolt Loads

6,420 5,180 3,950 2,720 1,480

250

FIGURE 5.1.3-1 RIGID SHEET SOLUTION
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5.1.3 (Cont'd)

Qualitatively, the difference in the results is due primarily to the effect of thermal
loading (Figure 5. 1.3-2) which becomes more severe as the sheet rigidities increase.

S
The Attachment Loads

Are Symmetrical About
vrrt rTn nn rnto• _ The Line Of Symmetry

S-S and P >P 2 .

Pp P
1 2  P3 =0 P4 =P 2  P51

4-u '4

S

FIGURE 5.1.3-2 ATTACHMENT LOADS DUE TO THERMAL LOADING WHEN
THE JOINT HAS CONSTANT BAY PROPERITIES

39
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5.1.4 Constant Bay Properties - Rigid Attachments

The attachments may be considered rigid if the attachment-hole flexibility is
negligible when compared to the axial flexibility of the sheets as, for example, when the
sheets consist of flexible (soft) materials and the attachments are housed in large hia-
meter rigid bushings. Although this situation seldom occurs in practice, the problem is
of interest from a qualitative point of view, since it represents another limiting case of
the general one-dimensional problem. In the limiting case, f -- 0 and the compati-
bilit, Eq. (1) of Paragraph 5.1.2 yields

AO+ X()
P1 L L"b'l)t1 Ecj.B

P2 = 3 =P4 PN-i 0

Thus, from the equilibrium equation,

X A
PN = X-P (2)LI' + L (2)

The above equations show that for infinitely rigid pins and constant bay properties, the
two end attachments carry all the thermal and zyiecnanical loads.

When the upper and lower sheets are each heated to lifferent uniform temperatures,
then

,&0 [ &T)T - (aAT)B] L

so that

"P X + (AE)T r (cAT)T - (PAT)B (3)

I (AE•,

and the intermc:iiate attachment loads are all /er.,.
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5.1.4 (Cont d)

7he effect of infinitely rigid attachments for the splice of Figure 5 .1. 2-2(a) upon theIi attachment loads may be calculated where, as before in Paragraph 5.1.2,

X =20,000 lbs.

L -6
(AE)T .356 x 10 In/lb

*19

L -6
(AE)B .267 x 10 in/lb

I. [(a-T)T- (aAT)Bj = 1110 x 10- inch

but f=0 .

Substituting the above quantities in Eq. (3) gives
n4

20,000 + (-3-6-)(1)10)
1 =3.267 =13.200 lbs.

.356

For rigid attachments as atated above,

P2 = P3 = P4 = P5 = 0

and for ecuilibrium

P6 =20, 00'-1"3,200 =6,800 lbs.
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5.1.5 The Influence of "Slop" on the Load Distribution

The presence of "slop", due to manufacturing tolerance and differential thermal
expansions between the plate holes and attachments, affects load distribution through the
basic joint compatibility equation.

The "slop" at each attachment is indicated by the difference in diameters of the
plate hole snd attachment (Figure 5.1.5-1), as expressed by

e = emfg + etemp ; e >0 (i.e., e must always be a clearance),

where
e Initial room temperature manufacturing tolerance (clearance or interfer-

ence. Interference has negative sign.)

and
etemp thermal slop (clearance or interference due to differential thermal

expansion between plate holes and attachments)

[aT)sheet -(Tattach D Dhl

S~e e• -

FIGURE 5.1.5-1

.,

FIGURE 5.1.5-1 ATTACHMENT IN AN OVERSIZE HOLE

As discussed in Paragraph 5. 1. l, the joint displacements (for compatibility purposes)
have been measured from a datum defined by the initial spacing between the centerlines
of adjacent attachments. When slop is present, and thermal and mechanical loads are
applied to the joint, the attachments are displaced from the centers of the holes until
they bear up against sheet material, as shown in Figure 5. 1.5-2.
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5.1.5 (Cont' d)

LJ+6 J

r/ -- /f"- ° + ' 2 '

fJ PJ+I
Centers of

/Holes
77]w

Lj +5B

FIGURE 5.1.5-2 ATTACHMENT DISPLACEMENTS DUE TO SLOP - POSITIVE LOADS

The algebraic sign of the slop displacements depends on the direction of the joint

loads. For the top sheet, the displacement between adjacent attachments is given by
-e P.+ e P

jT 2 jP_ 2 fj 1

and for the bottom sheet, by

ejB P e(+l)B
6.:_I_. - Pi+ I_jB 2 pJi - 2 P +1

where a positive 6 Increases the spacing between adjacent attachments and

• + 1 for a positive attachment load,

P = - I for a negative attachment load.

IPi

The Incompatibility due to slop is therefore given by

!(e + e 1T (eTe
Aj jT - B= 2 T Be)+1  p+ T (e~ Bj J (1)
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5.1.5 (Cont'd)

Equation (1) is significant in that it brings out the very nature of the slop problem.
Consider, for example. that the slop is the same at all attachments. In this case. Eq. (1)
reduces to

A6j (e T ( e (2)

As the mechanical loads applied to the joint increase, all the attachment loads tend to act in
the same direction (opposite to the externally applied load) or,

p p
IP l
1'j AI I Pi I

The bracketed quantity in Eq. (2) thus becomes zero and therefore

A6 = 0 (3)
j

Since the A 6 's determine the influence of slop on the load distribution, Eq. (3) in-
dicates that for high joint loadings the effects of uniform slop are eliminated. TR solve for
the load distribution with slop, the basic one-dimensional compatibility expression. Eq. (5)
of Paragraph 5.1.1, must be modified by the addition of A 6 The compatibility equations
then become

L- - jT i Pi =(A~ 5 ÷ j)- PjfA + f(jOl) + A x(-+Tf (4)1 i=1 J JJ0+) A

The above equation, together with the equilibrium Prlantion

N

x=X ,.
j=1 J

provides N equations for the N required attachment loads, P. .The solution of these equa-

tions, however, involves more than simply solving a set of simultaneous algebraic equations.
The values of A6. on the right side of 'Eq. (4) are given by (1) from which, in order to determine

J
the A6 3 s, the sign of the attachment loads (positive or negative) must be determined. But this

is not known in advance. This presents one of the major difficulties of the slop problem. The
suggested method of attack is as follows:

(1) Assume a set of directions for the attachment loads.

(2) Determine the A 6 Is from Eq. (1) and solve the simultaneous compatibility and

equilibrium equations (Eq. (1) of Paragraph 5. 1. 1 and Eq. (4) above).
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5.1.5 (Cont'd)

(3) If the directions of the attachment loads as obtained from the solution agree
with the initially assumed directions, the solution is correct.

(4) If the directions of the attachment loads as obtained from the solution do not
agree with the initially assumed directions, the solution is incorrect. The procedure
must be repeated with a new set of attachment load directions, preferably the ones
obtained from the solution.

The solution is the correct one when the assumed set of attachment load directions

yields a solution with the same set of directions.

Obviously, a digital computer program is desirable in solving problems of this sort.

The following example illustrates the method of solution.

Scarfed steek and aluminum plates are bolted together with three attachments as shown
in Figure 5. 1.5-3. Find the attachment loads when the steel and aluminum plates are subjected
to uniform temperature rises of 640°F and 80°F, respectively, and a mechanical load of
X = 5000 lbs. is applied to the joint. The manufacturing tolerance is to be taken as em .0003

inch for all holes. It is assumed that the bolt-hole flexibilities have been determined experi-
mentally to be:

-6fl = 1. 300 x 10 in/lb
1 -6

f = 1. 200 x 10 in/lb (Refer to Sub-section 5.3 for a discussion of bolt-hole
2 -

f = 1. 300 x 10-6 in/lb. flexibility)
3

The appropriate quantities for substitution in Eq. (4) are first determined.
Using average thicknesses for each bay,

= 1.25 = .119 X 10- inlb
IT (.175)(2)(30) x 10

(1• = 1.25
\AE/ 2 T 1.125)(2)(30) x 106 = 167 x 10.6 in/lb

= 1.25= .278 x 10 6 in/lb
IB (.225)(2)(10) x 10

1.25 -6

2B (.275)(2)(10) x 106 x

V
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5.1.5 (Cont'd)

Steel

AT =640°F
511 6 2

-Dia. Steel Bolts E 30x:106 lbin

a =6. OxO in a =6.5x10 in/in/eF

i n. -OF

n44

S~5000 lb• I -0 " I

F R . -X I5000 Ibs

•; 
Aluminum

S1. 25 in. 1. 25 in --. AT = 80°F

Sot =12x:10- in/in/°F

Since the temperature rise iii each oay is unizorini the incompatibilities due .unrestrair-ed
:• thermal expansion are giver, by

S•1 = [(6tAT)T -(1.T)B3 ] L

-6 Inch

- 4000 x 10-6 inch .

A ssuming the temperatnre of each bolt tc be the .aric as the surrotnding sheet

material, the si-ps due to ter..perature are given Ly

temp = (T)top sheet - (cT)top o; uatach. D hele
= .tempi top (6.01640) x.31w Io6

= 100 x inch.

WADD TR 60-517 5.34



5.1.5 (Cont'd)

[etempj bottom = [(T)bottom sheet (aT)bottom of attach.] Dhole

= (12.0X80) - (6.0) (8o) x .3125 x 10-6

= 150 x 10- inch.

-6Since eng =300 x 10 in. the total slops are given by

"elT =e 2 T = e3T = {emfg +etemp top
[ 3 00 o X

400 x 10-inch.

"elB =e 2 B =e3B m[eMfg +etemp] bottom

[300 + 150] x 10-6

= 450 x 10 6 Inch.

The incompatibilities due to slop, Eq. (1), are thus
A6 1(0040 P2 (40 + 50

1'21 1pi

2 2 pI45- 4 25 2 p
.9 P- 1 -_ 1 04

ýi% IN _ P

2 1 = 21)

Substituting the known quantities in the incompatibility Eq. (4 and collecting terms yields
the following expressions: 

r2 to1.697 P -1. 200 P2 = 4595

1 2 \P 1 P 31) (a)1

.394 P + 1.594 P - 1.300 P3 =4835+425 - - _

and for equilibrium,A

P+ +1 + P = 5000.

Expressions (a), (b) and (c provide 3 simultaneous equations which can be solved for the
attachment loads P1 .I 2 and P3 ., provided their Jirections are assumed correctly.

For a first trial, assume that all the attachment loads are positive. In this case the
slop terms (2nd terms on the right in (a )and (b)) vanish and the expressions reduce to

1. 697 P I- 1. 200 P 2 =4595.3

.394 P I+1. 594 P 2 -1. 300 P34835

P1  + P2  + P3  =5000.
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5.1.5 (Cont' d)

for which the solution is

P1 =+ 3880 lbs "•

P =+ 1650 lbsr (d)

P3 =-5301Ibis

The above solution would be correct if no slop were present. However, since joint
slop is present, the solution contradicts the initial assumption that the bolt loads are all
positive and it is therefore incorrect. As a second trial, assume that the directions of

the attachment loads are as given by the first solution, namely, that the loads in the first
two bolts are positive while the load in the last bolt is negative. Expressions (a) and (b)
then become

1.P697 P- 1.200 P2 =4595

394 P + 1. 54 P 2  1.300IP3 =3985.

and as before,

P 1 + P 2 + P 3 = 5000.

for which the solution is

P 1 = 3730 lbs

P2 = 1440 lbs (e)

P 3 = -170 lbs.

This is the correct solution, since the directions bf the bolt loads are in agreement with the
initial assumption.

Expressions (d) and (e) show that there is not much disagreement between the solutions
with and without slop. This was to be expected. since the slop for the joint under consideration
is small.

5.2 THE TWO-DIMENSIONAL (BOWING) PROBLEM

When the bouniary conaitions are such that the joint is allowed to bow out .•f its own

plane, the solution is much more cumplicate.i than in the one-dimensional case. Additional

factors such as rotati.nal and out-of-plane ,iisphcements, beam-coluni effects, moments

at the attachments, etc., enter intOz the problem. The present state of the art makes an exact

analytical solution t- the problem impracticable.

The purpose of the analysis presented here is to -btain t first approxir, ation to the

solution of the two-dimensional (bnwing) problem by modifying tWe equations of the one-

dimensional (uniaxial) silution.

A letailed 3erivation rf the solution is presented in Reference 5-1.
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5.2.1 The Joint Equations

P,.wing 'f the joint (Figure 5. 2. 1-1) occurs .ue to the combined effects of
non-uniform temperature -listribution and externally applied mechanical loading.

The scluti,-n presenteJ gives the shear loads in the attachmvents for a known
-.et f applied mechanical and thermal loads where the following simplifying assumptions
are made:

(1) The bay properties are constant (sheet thicknesses, attachment size and
* spacing, stiffnessess, etc., are the same for each bay). The thermal loading is assumed

n-'t to vary in the longitudinal direction, but may vary through the thickness.
(2) Vertical .out-of-plane deflections and clamping loads are assumed to have a

negligible effect on the load distribution (negligible beam column effects).
(3) Monen s at the attachments have a negligible effect on, or are included in,

A ithe attachment-hole flexibility.
(4) The contact faces of the top and bottom plates of the joint are initially plane;

the external axial loading is applied parallel to this plane in the direction of the line of attach-
ments.

(5) As in the one-dimensional case, the joint materials are assumed to deform
elastically under load.

lastic Axis ,.f Plate

/"14, A- A- Aý. 1+1B X +Y y )-MV Il J! I III)

j-i j j+l N

(a)

FIGURE 5.2. 1-1: (a) JOINr IN UNBOWED CONFIGURATION
(b) BOWING OF JOINT DUE TO COMBINED EFFECTS

OF NON-UNIFORM TEMPERATURE DIs'rRIBU'FION
AND MECIHANICAIL WADING
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5.2.1 (Cont'd)

Under the above assumptions the requirement of compatibility at the attachments
yields the following compatibility equations:

j
5' ~ -P. P f Xf(j 1, 2,. N-1) ()

A i Pf + j'1 f AT
fA =

whereA =(•)T~ ('E) B (EI)T +(E) (2)

A(- L [('OTwT+(Ef)BwB]
= Z10" L (YT + YB) (3)

ATEjT + (EK) B

+ y

IAT(Y B•) ML r4)+, -
fA +i L + (-)B 1

and w is the curvature due to temperature (Paragraph 4. 1.1). If the thermal gradient Is
linear through the thickness, then w approiamately equals aAT where ATis the linear

h h
thermal gradient through the plate thickness (positive for higher temperatures on the upper
face of the plate).

Equation I ) together with the equilibrium equation

provides N simultaneous equations for the determination of the N unknown attachment
shears.

A comparison of Eq. (1) with the one-dimensional compatibility equation, Eq. (1) of
Paragraph 5.1.2, shows that the two forms are identic.l. Thus, when the bay properties
are constant, the procedure for the two-dimensional solution is exactly the same as for the
one-dimensional case if the one-dimensional coefficients

L + L L

AE T AEB AE T

are replaced by the expressions on the right side of Eqs. (2), (3) and (4). respectively.
Coefficients A. sa B can then be obtained, as before, from Figures 5.1.2-1 for deter-

I jN
mination of the attachment loads (Eq. (2) of Paragraph 5. 1. 2).
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5.3 DETERMINATION OF THE ATTACHMENT-HOLE FLEXIBILITY FACTOR

The flexibility of a given attachment-hole combination must be determined quantitatively
in order to make use of the solutions presented. If load deformation curves for the specified
splice materials and temperatures are available (Figure 5.3-1), an Initially determined slope

Ko = gives the stiffness (or flexibility) in the elastic, low-load range.

101

Initial Slope [_-
Line

KjOKs = Secant Stiffness

V A- Secant Slope Line

/

A (Deflection)

FIGURE 5.3-1 ATTACHMENT-HOLE LOAD VS. DEFLECTION CURVE

This initial slope is larger than the secant slopes encountered at higher load levels:
using this initial value would give a conservatively greater stiffness (lower flexibility) than
actual for succeedingly higher load ranges. This would result in an overestimate of the
maximum attachment load. When load deformation data is available, and the joint analysis
shows loads corresponding to secant stiffnesses that are appreciably different from those
initially assumed, then the stiffnesses should be corrected and the analysis repeated. Such
a procedure should converge rapidly to a valid solution.

If load deformation data is not available, the limit bearing load criteria of Reference 5-2
may be used to obtain an estimate of the attachment-hole flexibility. These criteria result in an
overestimate of the attachment-hole flexibility and an underestimate of the maximum attachment
load at load levels below yield.

As an example of the way in which the criteria of MIL-IDBK-5 (Reference 5-2) may be
used to estimate the attachment-hole flexibility factor, consider the joint(in the illustrative
problem)of Figure 5. 1.2-2 in which the bolt diameter is 1/4 in.,the upper sheet is . 125 in.
thick titanium and the lower sheet is. 250 in. thick aluminum.

Assuming the aluminum plate to be of clad 2024-T6 material, Table 3. 2. 3. 0(f) of
Reference 5-2 givvs a bearing yield stress of 78, 000 psi. The load at this yield stress is
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5.3 (Coat' d)

Palum. = 78,000 (.250) x 1/4 = 4875 lbs.

If the titanium sheet is taken to be 6AL-4V material, Table 5. 2.4. 0(b) of Referenca 5-2
gives a bearing yield stress of 198, 000 psi. The load at this yield stress is

P = 198,000 (. 125) x 1/4 = 6200 lbsPtitan.

The average yield stress load is thus

6200 + 48?5P - = 5590 lbs.
avg.- 2

To find the bolt-hole flexibility, the deformation for which the average yield load occurs
is taken as being equal to 2% of the nole diameter (Reference 5-3, Paragraph 3.6111). For
this deformation

f 0 9(.o2x1/4)
avg 5590avg

5.4 REFERENCES

5-1 Report RDSR-3, Analysis of Joints, Republic Aviation Corporation (to be issued)

5-2 MIL-HDBK-5, Strength of Metal Aircraft Elements, March 1959

5-3 ANC-5 Bulletin, Strength of Metal Aircraft Elements, March 1955
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SECTION 6 - THERMO-ELASTIC ANALYSIS OF PLATES

This section is concerned with the determination of thermal stresses in plates. For
example, solid and hollow bulkheads are plate-like major components in the semi-monocoque
type of construction used in air and space vehicles.

The thermal-mechanical problems related to plates may be divided into bending, slab,
instability types. The first two are discussed in this Section 6 while the instability type of
problem is treated in Section 9.

The following symbols are used throughout this section:

a, b Planform dimensions of rectangular plates; radii
h Thickness of plate
r, e Polar coordinates
u Radial component of displacement
u, v, w Middle plane displacement in the x, y, and z directions
x, y, z Rectangular coordinates
u*, v* Displacements in the x and y directions

Eh
3

D 12 (1-zYZ)

E Young' s modulus

M T ctEf Tzdz
-h/2

Mx, My, Mxy Moments per unit of length

h/2

NT ltE f- TdzT -h/2
Nx, Ny, N Forces per unit of length

y xy
P Distributed lateral load
T Temperature
TD,AT Temperature difference between the upper and lower faces

a Coefficient of linear expansion
x •yy z

SZty ~ fComponents of strainE Xy : Ey z ' zXZ

V Poisson's Ratio

orr' 'rO' e00 Components of stress in polar coordinates

1xx yy zz 5
a a Components of stress in rectangular coordinates

0 Stress function
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2 2

6.1 THEORY OF DEFORMATION OF PLATES

6.1.1 Definition of a Plate

A plate is defined as a non-rigid three-dimensional structure in which one dimension,
the thickness, is much smaller than the remainine two dimensions. In its simplest form, the
theory of plates can be regarded as an extension of beam theory.

6. 1. 2 Assumptions For Linear Plate Theory

The classical theory of plates is based upon the following assumptions:

(1) The material is assumed to be homogeneous, isotropic, and to
obey Hooke's Law.

(2) The constant thickness of the plate is small compared to its other
dimensions.

(3) The deflections of the plate are limited in magnitude and are of the
order of the plate thickness. It can be shown that this restriction means that the effects
of the normal deflections upon stretching of the middle plane of the plate are negligible.
Consequently, only negligible stresses are induced in the median plane of the plate when
the plate is loaded normally.

(4) Plane sections which before bending are normal to the median p'ane
of the plate remain, under the above conditions, plane and normal to the median plane
after bending.

The median plane of the plate is assumed to lie in the xy-plane and the
thickness of the plate is h. If the plate is loaded by forces normal to the xy-plane
then the element will distort as shown in Figure 6. 1. 2-1, where u* and w are the
displacements in the x and z directions, respectively.

r'rom the assumption that the deflections are small and that no median
plane displacements or stresses are induced under deformation, the point 0 will be
displaced normally to the strainless median surface (the upper one) and the plane
section AOB will rotate into position A1 OB 1. The angle between the horizontal x-axis

and the tangent to the deformed plane at point 0 is 3w.
ax

In accordance with the assumption that plane sections remain plane and
normal after bending, the angle of rotation of the cross section A OB will also be
aw. Then for the small assumed deflections

-x

U* ;)w
ax

In a similar manner, the displacement in the y direction for any point a
distance z from the median plane is given by

vw
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6.1.2 (Cont'd)

(5) The normal stresses through the thickness of the plate are negligible
because the surface loads are small compared to the bending stresses induced in the
plate.

6.1.3 Three Kinds Of Plate Problems

The thermal-mechanical problems to be considered may be divided into

(1) Bending Problems - occur when the temperature varies in the thick-
ness direction and the mechanical loads are normal pressures.

(2) Slab Problems - occur when the plate is loaded by mechanical forces
parallel to the middle plane of the plate which are uniform through the thickness and the
temperature varies in the planform direction only. This is a plane-stress problem
(see Section 2 for definition of plane-stress) and is considered in Sub-section 6.3.

(3) Instability Problems - take place when there Is edge restraint to
expansio- in the direction parallel to the middle plane of the plate (see Section 9).

i60

WAdDD TRll60-517 6.6



6.1.4 Fundamental Equations Of Therwo-Elastic Plate Theory

The dlrec' approach to plate problems is to derive the equal-ions of
equilibrium of forces and compatiblity of displacementm. These equations are In
the form of partial differential equations which must be golved subject to prescribed
boundary conditions.

The differential equations or the thermal-mechanical problom of plates
are discussed next, followed by an illustratlive example. The xy-plaae Is ansamed tobe the middle plane of the plate of contant thickness h and the shape of the bound~ry
Is arbitrary. The components of displacement In tie x, y, and z directions are de-

noted by u*, v*, w (the symbols u, v. in this section are reserved for middle plane
displacements In the x- and y- directions, respectlvely). Under the assumptions that
plane sections remain plane, the displacements u*, v*, w are of the form:

u* (x,y,z) u (x,y) - z 2 (x,y)Ow

v* v (YZ)v(x,y) - z (x,y) (1)

w - w (xy).

The strain components in planes parallel to the xy-plane are:

2
Exx= =o - z

4 V 2 w(2)

4 Ou*÷ WO au 2zv f 2 w

au 8Vau Wv
Note: 5i 8 + y- are the strain components in the middle plane of theBx' ay' xy

plate and arise as a result of in-plane deformations. The additional terms are due
to the bending of the plate.

The corresponding stress components are (T - temperature above room
temperature datum): :4

E 5

xx E f *xW -(1 +V'

- •-E (6•3 • yy (1 +') -T) (3)

D- 2(1' V) *,cY
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6.1.4 (Cont'd)

which introduce the following forces and moments per unit of length (Figure 6. 1. 4-1):

h/2 h/2

N - f dz Mx f axZdz
Ix -h/2

-h/2 -h/2
h12 h/2 -

N- dz Ma--My of zdz (4)
yd yy yyy

-h/2 -h/2

h/2 h/2
N JX a, Ydz M -X-MxY j a XYz&

MI "y X yx- M-b/2 -h/2

I

YY

S • Nyx

FIGURE 6.1.4-1 POSITIVE DIRECTIONS OF FORCES AND MOMENTS

Substitution of Eqs. (2) and (3) into Eqs. (4) yields

N X E h - ' + - -"

2 T1-13 15)

N - Eh W•, .4.

xy 2(1T 0 -) 6. f
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6.1.4 (Cont'd)

fA2W a2W\ MT

My ~ - -- •+¥ -a2 I-P(5 otd
ax ay/
2 22

xy (5 - a-x-],

Swhere the bending rigidity per unit of length of the plate is

3
D Eh21_2Eh (6)

and h/2

NT fE_ Tdz
T -h/2

h/2 
(7)

MT aE f Tzdz,
-h/2

where a and E are assumed to be constant.

The equations of equilibrium in planes parallel to the xy-plane are

ON ON
xay

(8)
ON ON

Sxy+ y 0ax ay

and these equations imply the existence of a stress function 0 (x.y) such that

32
N2 x

'10- Nx•y xy
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6.1.4 (ContId)

Integration through the thickness of the compatibility equation for the plane
stress problem (Reference 6-1) gives

T4'

where
2 2 a2

ax2 ay2 (10)

4-2 2 2
V4 3- + -ay

The equation of equilibrium in the z direction (Reference 6-2) is

aM2M 22w 2w w282Mx a2M•' ---- Y --- +(2N - N)

!S = - 2 _( -+ -
ax2 axay )y2x 2x2 xy +xNy y )y2 1)

where P (x,y) is the distributed lateral load in the positive z direction; and
Mx, My, M xy are the conventional bending moments per unit of length. If

the quantities Mx, M , Mxy are expressed in terms of the displacements from

Eq. (5), then the equilibrium equation in the z direction becomes:

4 a2 22 2
D V w= P+N ++ N L + 2N 1 2MSIx 2 ; 2y y Dx ay M - T (12)

The solution of a problem requires in general that Eqs. (10) and (12) be
solved simultaneously subject to appropriate boundary conditions.

If the plate is supported so that Nx, N y, N are negligible, as would occur

if there was no restraint in the median plane of the plate and no applied in-plane
forces, then the simpler equation may be used:

4 1 2D V w=P- V M1-' T (1Z

It Is clear that the equation expressed by (13) is equivalent to a "mechanical
problem" with normal loading = P - 1 V2 M , so that all the known

techniques (Reference 6-1) for non-thermal problems may be used.
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6.1.4 (Cont'd)

A solution of the differential equations in the case of a simple plate problem
follows.

A clamped circular plate of radius R :s subject to a linear gradient through

its thickness h where the temperature is T1 and T10 at the top and bottom faces,

respectively (T 1 > To). Find the deflection and stress assuming that the middle

plane of the plate is free to expand.

z

FIGURE 6.1.4-2 CLAMPED CIRCULAR PLATE WITH LINEAR GRADIENT
THROUGH THICKNESS

The temperature variation is denoted by

T= T- (T T )

From (13), the differential equation4 to be solved is

4 1 2DV w = P - V MT
D~w=P-V M

where 2

P=0, andV M = 0as M does not depend on x and y.
T T

Therefore

7 w =0 ,(14)

or in polar coordinates, with r as the radial coordinate:

r4 d4w!+ 2 d~w _2 d2 w -'"- 0. (15) i
43 2 dr 4dw+2r 3 d w r 2-d + r =ý0(5

dr4 dr3 dr
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6.1.4 (Cont'd)

This is an equi-dimensional differential equation and the solution is readily
found in an elementary differential equations text,

22
w=Alogr+Br logr+Cr + D (16)

However, the deflection and bending moment must remain finite as r.-0.

This implies that A = B = 0. Therefore, w reduces to

w =Cr2 +D . (17)

dw
The clamped boundary conditions are w = d---= 0 when r = R. There-

fore, sunstitation of Eq. (17) into the boundary conditions yields w-0,

i.e., the normal deflections are identically zero.

From Eqs. (5) or analogous equations in polar coordinates, the
radial and transverse moments per unit length are given by

-MT
Mr Me = 

(

where from Eq. (7)

h r(TO + T1) h

ST E f 2 + (T0 -T 1 ) z dz,

-h/2

or aE(T -T) h

M 01
MT = 12 (19)

The components of maximum stress in the radial and transv,..rse
directions are

= 6 6 cE(Ti- To)

SrrI, Olmax h001r = r M== 2(1 -Y) (20)

a = or EAT
rrj a 0 a 2 (1 -Y) (21)

Smax max

It where A T = T 1 - To = difference in temperature between the upper and

lower faces, respectively.

Note that in the simply supported case with boundary conditions
w = M = 0, there result zero stress and paraboloidal deflec'iorrs (see Paragraph A

r
6. 2. 2. 3). More precise analysis yields spherical deriections.
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6.2 BENDING OF PLATES

Bending problems in plates occur when the temperature varies in the
thickness direction (and possibly other directions) and the mechanical loads
(if they exist) are normal pressures. In the succeeding paragraphs emphasis
will be placed upon the linear gradient through the thickness.

6.2. 1 Bending of Rectangular Plates With Linear Gradient Through The
Thickness

•he rectangular plate is shown in Figure 6.2.1-1 and the temper-
ature variation through the thiciuess is assumed to be linear. Ex-.Pressions
for stresses and deflections corresponding to various support conditions are
given in the following paragraphs.

h

b/2

-, K -

b/2

4kz z

y
AD= ro-T1

FIGURE 6.2. 1-1 PLATE GEOMETRY SHOWING A POSITIVE LINEAR THERMAL
GRADIENT THROUGH THE THICKNEISS
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6.2.1.1 Unrestrained Rectangular Plates

A free rectangular plate subjected to a linear temperature distri-
bution through the thickness and constant temperature over the planform is unstressed.
The plate becomes curved and fits a sphere of radius inversely proportional to the
difference in surface temperatures and inversely proportional to the thickness.

6. 2.1.2 Clamped Rectangular Plates

Maximum Stress:

EaATh
• x ~y=• 2(1Et- ~ (+ sign corresponds to face z =+ --- ) (1)

where the temperature difference is defined by

AT = 2 2T

Deflection: The transverse deflection w is identically zero.

6.2. 1.3 Simply Supported Rectangular Plates

Deflection(see Figure 6.2.1-1):
-AT(1+v.)2a C sin m--a cosh -

W (1 + )43 3 cosh aw h m m
S~~m=l, 3,5S... ,,

where mxb

m 2a (lb)

Bending Moments Per Unit of Length:
2D sin (a- cosh (J!Y)

_x = x h m cosh a (2a)

m=1,3,5... m

2 ifrocs(ýý
"M -aAT(1- 

2 )D 4DaAT (1 -Y Z "c a

y h A3h m cosh a .

(2b)

The series for w converges very rapidly while the series for the moments
converge more slowly. Judgment must be used in choosing a suffiC -it number I
of terms for the required accuracy. However; the formulas for the maximum
bending moments and stress are expressible in closed form as given below.
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